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Abstract

High spatial resolution soil moisture information is important for regional–scale hydrologic, climatic and agricultural applica-

tions. However, available point-scale in-situ measurements and coarse-scale (˜10s of km) satellite soil moisture retrievals are

unable to capture hillslope to sub-catchment level spatial variability of soil moisture as required by many of these applications.

Downscaling L-band satellite soil moisture retrievals appears to be a viable technique in estimating near surface (˜ top 5 cm)

soil moisture at a high spatial resolution. Among different downscaling approaches, thermal data based methods exhibits a

good potential over arid and semi-arid regions, i.e. in many parts of Australia. This study investigates three downscaling

approaches based on soil thermal inertia to estimate near surface soil moisture at high spatial resolution (1 km) over Krui and

Merriwa River catchments in the Upper Hunter region of New South Wales, Australia. These methods are based upon the

relationship between the diurnal soil temperature difference (ΔT) and daily mean soil moisture content (μSM). Regression tree

models between ΔT and μSM were developed by using in-situ observations (in the first approach) and using land surface model

(LSM) based estimates (in the second approach). The relationship between ΔT and μSM was modulated by the vegetation

density and the Austral season. In the in-situ data based approach, soil texture was also employed as a modulating factor.

These in-situ datasets were obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network

and model-based estimates from the Global Land Data Assimilation System (GLDAS). Moderate Resolution Imaging Spectro-

radiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) products were used to define vegetation density.

An ensemble machine-learning model was employed in the third approach using ΔT, NDVI and Austral season as predictors

and μsm values as responses. Aggregated airborne soil moisture retrievals were used as the coarse resolution soil moisture

products. These coarse resolution soil moisture simulations were downscaled to 1 km by employing the above three approaches

using MODIS-derived ΔT and NDVI values. The results from the three downscaling methods were compared against the 1

km soil moisture retrievals from the National Airborne Field Experiment 2005 (NAFE’05) over 3 days in November 2005. The

results from both in-situ data and GLDAS-based regression tree models show RMSEs of 0.07 cm3/cm3 when compared against

the high resolution NAFE’05 airborne soil moisture observations. The GLDAS-based model can be applied over a larger extent,

whereas the in-situ data based model is catchment specific. These results were compared with the results from the machine-

learnt model. A combination of these methods with additional forcing factors such as topography, meteorology, etc. can be

utilized to develop an improved downscaling model. Such a mod
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• High spatial resolution soil moisture information is important for regional–scale
hydrologic, climatic and agricultural applications.

• Available point-scale in-situ measurements and coarse-scale (~10s of km)
satellite soil moisture products are unable to capture hillslope to sub-catchment
level spatial variability of soil moisture as required by many of these
applications.

• Downscaling L-band satellite soil moisture retrievals appears to be a viable
technique in estimating near surface (~ top 5 cm) soil moisture at a high spatial
resolution.

• Among different downscaling approaches, thermal data based methods exhibit a
good potential over arid and semi-arid regions, i.e. in many parts of Australia.

Fig 1: Soil moisture is a key variable in a number of environmental
processes (Image source: NASA).

1. INTRODUCTION

• This study investigates three downscaling models based on soil thermal inertia
relationship between the diurnal soil temperature difference (ΔT) and daily
mean soil moisture content (θμ) to estimate near surface soil moisture at high
spatial resolution (1 km) over two sub-catchments in the Upper Hunter region
of south-eastern Australia.

2. OBJECTIVES

 The relationship between the diurnal soil temperature difference (ΔT) and the
daily mean soil moisture content (θμ) has been used in this work to develop
the downscaling model.

 Thermal inertia (TI) is a property that characterizes the degree of resistance of
a body to the changes in its surrounding temperature.

 𝑇𝐼 = ρ. 𝐾. 𝑐 where ρ, K and c are the density, thermal conductivity and
specific heat capacity of the material [1].

 Water has a high specific heat capacity, hence high thermal inertia, compared
to dry soil.

 Therefore, Presence of moisture increases the thermal inertia of soil, i.e.
higher the soil moisture content, lesser the diurnal temperature difference of
soil (ΔT) [2, 3].

 This relationship between θμ and ΔT has been employed in this study to
estimate soil moisture at high spatial resolution.

3. THEORY

• The study area, Goulburn River catchment (~7000 km2), is located in the Upper-Hunter region of south-
eastern Australia (in NSW).

• The two focus catchments, Krui (~562 km2) and Merriwa River (~651 km2), are located in the northern
half of the Goulburn River catchment. These two sub-catchments are mostly cleared for cropping and
grazing.

• Under the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) project, 26 monitoring
stations have been established across the Goulburn River catchment to monitor soil moisture and soil
temperature (Fig. 1) [4, 5]. Soil moisture and soil temperature of 0-5 cm soil layer is measured by
using Steven’s Water HydraProbes at these monitoring stations.

• Soil moisture over a 40×40 km area over the Krui and Merriwa River catchments were recorded at 1
km spatial resolution under the regional airborne campaign of the National Airborne Field Experiment
2005 (NAFE’05) on 31st Oct, 7th, 14th and 21st November 2005 [6].

 SASMAS in-situ data (2003-2015) [4, 5]
- Daily mean soil moisture (θμ) (0-5 cm soil profile)
- Diurnal soil temperature difference (ΔT) (0-5 cm soil profile)

(ΔT = T13:30 – T01:30)  http://www.eng.newcastle.edu.au/sasmas/SASMAS/sasmas.htm

 NAFE’05 airborne soil moisture retrievals [6]
- Soil Moisture (1 km resolution) 30th Oct, 7th, 14th and 21st Nov 2005.

www.nafe.monash.edu

 MODIS (MYD11A1) data (2015)
- Day and Night Land Surface Temperature (LST) data (1 km resolution)

Land Processes Distributed Active Archive Center (LP DAAC) 

 MODIS (MYD13A2) data (2003-2015)
- 16-Day Normalized Difference Vegetation Index (NDVI) data (1 km resolution)

Land Processes Distributed Active Archive Center (LP DAAC) 

 National Soil and Landscape Grid
- Clay content (90 m resolution)

Commonwealth Scientific and Industrial Research Organisation (CSIRO)

 Global Land Data Assimilation System (GLDAS)
- θμ and ΔT (0-10 cm soil profile) https://disc.gsfc.nasa.gov

4. DATA

Fig. 2: (a) Krui and Merriwa River catchments and SASMAS soil moisture monitoring stations along
with the NAFE’05 study area (40×40 km) and GLDAS (25 km) grids. The GLDAS pixels used for
model building are labelled as A-D. (b) Land use/land cover of Krui and Merriwa River catchments.

5. STUDY AREA

6. METHODS

MODEL 1
ΔT – θμ Regression Model [7, 8]
(in-situ data based ΔT and θμ )

Inputs
• SASMAS in-situ data (ΔT and 

θμ )
Modulated by:
• Season: Austral spring (Sep-Nov)
• NDVI: (NDVI<0.4, 0.4-0.6 and 

>0.6)
• Soil clay content: Clay<35% and 

>35%

MODEL 2
ΔT – θμ Regression Model [9]
(Model based ΔT and θμ )

Inputs
• GLDAS land surface model 

(LSM) based ΔT and θμ

Modulated by:
• Season: Austral spring
• NDVI: (NDVI<0.4, 0.4-0.6 and 

>0.6)

MODEL 3
Artificial Neural Network (ANN)
(Model based ΔT and θμ )
• Levenberg-Marquardt 

algorithm with 50 hidden 
neurons (by trial and error)

• Matlab 2017b Neural 
Network Fitting Toolbox

Inputs
• GLDAS model based ΔT and θμ

of Austral spring 
• NDVI

6. 1 Model development

6. 3 Validation

6. 2 Estimating soil moisture at a high spatial resolution

• Calculating ΔT values using MODIS LST products.
• Estimating at 1 km spatial resolution by fitting ΔT  values into the regression tree models and to the ANN.
• Downscaling simulated coarse resolution satellite soil moisture products.

• Validation with NAFE’05 soil moisture retrievals.

7. RESULTS

NAFE’05 Soil Moisture

MODEL 1 – In-situ data based ΔT – θμ Regression Model

MODEL 2 – LSM derived estimates based ΔT – θμ Regression Model

MODEL 3 – Ensemble Machine Learning Model (Artificial Neural Network)

Fig. 7: (a) Downscaled soil moisture and, (b) soil moisture error, for in-situ data based ΔT – θμ regression model on 7th, 14th 21st November 2005.

Fig. 8: (a) Downscaled soil moisture and, (b) soil moisture error, for GLDAS data based ΔT – θμ regression model on 7th, 14th 21st November 2005.

Fig. 9: (a) Downscaled soil moisture and, (b) soil moisture error, for Neural Network based model on 7th, 14th 21st November 2005.

• Due to the high cloud cover, 31st Oct 2005 was omitted from this analysis.
• NAFE’05 dataset shows mean soil moisture of 0.36, 0.16 and 0.14 cm3/cm3 on 7th, 14th

and 21st November 2005. This implies a drying trend towards the end of November.
• Error maps (Fig. 7b, 8b and 9 b) show the absolute difference of soil moisture between

NAFE’05 datasets and downscaled soil moisture.
• A Root Mean Square Errors (RMSE) of 0.07 cm3/cm3 were observed with downscaled

soil moisture from in-situ and LSM-based ΔT – θμ regressions, and an RMSE of 0.08
cm3/cm3 was observed with downscaled soil moisture from Neural Network based
model, when compared with NAFE’05 soil moisture data.

• A high error was observed with the Artificial Neural Network compared to the in-situ
and modelled data based ΔT – θμ regression models

Fig. 3: Regressions developed for
Austral spring, clay content <35%
using SASMAS in-situ data.

Fig. 4: Regressions developed for
Austral spring, at GLDAS pixel-C
using GLDAS model-based data.

Fig. 5: Levenberg-Marquardt
algorithm with 50 hidden neurons
with GLDAS-based inputs.

Fig. 6: High spatial resolution (1 km) airborne soil moisture
retrievals from NAFE’05 on 7th, 14th 21st November 2005.
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• Downscaled soil moisture from ΔT – θμ regression models, based on both
(i) in-situ and (ii) GLDAS LSM based data, showed RMSEs of 0.07 cm3/cm3.
Downscaled soil moisture from Artificial Neural Network based model shows
RMSE of 0.08 cm3/cm3.

• Soil thermal inertia based models showed better performance during dry
catchment conditions.

• Both, in-situ and LSM based regression models show promising results in
estimating high spatial resolution soil moisture using satellite data.

• Neural Network based model should be further improved using in-situ data
and other factors affecting ΔT – θμ relationship.

8. CONCLUSION

(a) (b)

(a) (b)

(a) (b)
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