#### Assessment of climate change impacts on semi-arid watersheds in Peru

Fariborz Daneshvar<sup>1</sup>, Indrajeet Chaubey<sup>1</sup>, Laura Bowling<sup>1</sup>, Keith Cherkauer<sup>1</sup>, Andre Geraldo de Lima Moraes<sup>1</sup>, and Jose Alfredo Herrera Quispe<sup>2</sup>

<sup>1</sup>Purdue University <sup>2</sup>National University of Saint Augustine

November 22, 2022

#### Abstract

Low seasonal precipitation and high demand for water use for agriculture, mining, industry, power generation and human consumption have made water resources management a concern in the Arequipa Region of Peru, which may be worse under future climate projections. In this study, the hydrologic response to climate change is evaluated within the Quilca-Vitor-Chili River Basin in the Arequipa Region of Peru. The Soil and Water Assessment Tool (SWAT) is used to develop a watershed model based on topographical, land cover, soil, and climatic (precipitation and temperature) data, while taking into account anthropogenic inter-basin transfers. The model is calibrated and validated for current conditions. Three climate scenarios derived from Atmosphere-Ocean General Circulation Model (AOGCM) simulations for both Representative Concentration Pathways (RCPs) 4.5 and 8.5 are obtained from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset. Surface runoff and water yield associated with future climate scenarios are calculated for two near (2010-2039) and far (2040-2069) futures. Results of this study will provide a guideline for developing water policy in the region in order to mitigate negative impacts of climate variations in the region.







# Assessment of climate change impacts on semi-arid watersheds in Peru

### MOTIVATION

- Low seasonal precipitation and high demand for water use
- High spatial variation in precipitation (Figure 1)
- Need for water regulation and diversion to mitigate impact of future climate variations



Figure 1. Average annual precipitation (mm) in the region (2008-2017)

## **OBJECTIVES**

- > Develop hydrological model to simulate water cycle
- Evaluate hydrologic response to climate change

### **STUDY AREA**

Quilca-Vitor-Chili River Basin in Arequipa in Peru Area: 13,549 km<sup>2</sup>

- Major City: Arequipa (population of over 850,000)
- Four reservoirs for water regulation
- Two water diversions from Camana River Basin
- One water withdrawal for irrigation project



Figure 2. Major rivers, water bodies, and water regulations in Quilca-Vitor-Chili River Basin



Fariborz Daneshvar<sup>1\*</sup>, Indrajeet Chaubey<sup>1</sup>, Laura Bowling<sup>2</sup>, Keith Cherkauer<sup>1</sup>, Andre Moraes<sup>1</sup>, Jose Herrera<sup>3</sup> <sup>1</sup> Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States <sup>2</sup> Department of Agronomy, Purdue University, West Lafayette, IN, United States <sup>3</sup> School of Computer Science, Universidad Nacional de San Agustín, Arequipa, Peru \* Email: <u>fdaneshv@purdue.edu</u> Current Condition HYDROLOGIC MODELING Soil and Water Assessment Tool (SWAT) (5.a) surface runoff (mm)

Physically based, semi-distributed watershed/water quality model SWAT Inputs layers: (3.a) Topography (12.5 m)

(3.b) Land cover (1:600,000)



(3.d) Sub-watersheds (205)

Figure 3. SWAT input layers

- SWAT Inputs Databases:
- 1) Daily climate (precipitation and temperature) for 15 stations
- 2) Point source discharges (2 points) and withdrawal (1 point)
- 3) Reservoirs daily release rates

### **CLIMATE SECENARIOS**

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP)

- General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5)
- Resolution: 0.25 degrees (-25 km \* 25 km)
- Three climate models: 1) CNRM-CM5, 2) MPI-ESM-MR, 3) MRI-CGCM3
- Two Representative Concentration Pathways (RCPs): 1) 4.5, 2) 8.5
- Two periods of simulations: 1) Near future (2010-2039), 2 Far future (2040-2069)

### RESULTS > Hydrologic Model Performance

- SWAT model calibrated for 2009-2013
- Calibration point: Charchani station
- Model performance: NSE: 0.53 PBIAS: -3.79 % R<sup>2</sup>: 0.58







Figure 5. Daily average of surface runoff (mm) and water yield (mm) at sub-watershed level for current condition (2009-2017)



Figure 6. Ensemble average of daily water yield (mm) at sub-watershed level

> Slight increase in surface runoff and water yield are predicted in high attitude headwaters, especially for RCP 8.5 in far future (2040-

> All models predicted low water supply in low altitude catchments > Incorporation of water diversions and withdrawals into future simulations will provide more accurate picture of water availability and will be subject of future research