Seamless Transition of Data Analyses and Analytics from a Local
Workstation to Scalable, Massively Distributed Processing on the
Cloud Using the Open Source PODPAC Library

Jerry Bieszczad!, Mattheus Ueckermann!, Dara Entekhabi?, David Callender!, and David
Sullivan!

!Creare LLC
2Massachusetts Institute of Technology

November 24, 2022

Abstract

Newer satellite platforms, such as NISAR, are poised to produce huge amounts of data that require large computational
resources. Currently, researchers typically download datasets for analysis on local computer resources. This paradigm is no
longer practical given the volumes of data from new sensing platforms. While cloud computing services offer a potential solution
for accessing and managing large computational resources, there remains a significant barrier to entry. Levering cloud services
requires users to: navigate new terminology without appropriate documentation; optimize settings for services to reduce costs;
and maintain software dependencies, upgrades, and allocated hardware resources. A more accessible approach for migrating
earth scientists to the cloud is needed. To address this problem, we are developing the open source Python library PODPAC
(Pipeline for Observational Data Processing Analysis and Collaboration), with the goal of helping to address NASA’s rapidly
growing observational data volume and variety needs. PODPAC enables earth scientists to seamlessly transition between
processing on a local workstation (their current paradigm) to distributed remote processing on the cloud. It does this by
leveraging a text-based JSON format automatically generated for any plug-and-play algorithm developed using PODPAC (e.g.,
in a Jupyter Notebook). This text format describes data provenance, and is used in RESTful web requests to preconfigured
PODPAC cloud deployments, allowing scalable, massively distributed processing. We demonstrate the seamless transition to
the cloud by developing a simplified soil moisture downscaling algorithm in Python using PODPAC. Data for this algorithm uses
NASA Soil Moisture Active Passive (SMAP) sensor retrieved from the National Snow and Ice Data Center using OpenDAP,
and fine-scale topographic data retrieved via Open Geospatial Consortium (OGC) Web Coverage Service (WCS) calls. We
then use a serverless AWS Lambda function to run the same algorithm using the automatically-generated text format. Our
generic preconfigured environment can handle a wide variety of processing pipelines, and scale up to 1024 parallel processes.

This approach enables incremental adoption of cloud services by researchers, significantly lowering the barrier to entry.

IN41D-0858
% FALL MEETING

AV
Washington, D.C. | 10-14 Dec 2018

100

., D. Callender”, and D. Sullivan®

Seamless Transition of Data Analyses and Analytics from a Local Workstation to
Scalable, Massively Distributed Processing on the Cloud Using the Open Source PODPAC Library

J. Bieszczad™, M. Ueckermann’, D. Entekhabi” “Creare LLC, " Massachusetts Institute of Technology

Motivation

NASA seeks to migrate EOSDIS observational data
products to the Amazon Web Service (AWS) cloud

AWS enables data scientists to exploit massively
scalable processing capabilities on the cloud

However, barriers to entry are high, given the unfamiliar
terminology, setup, workflow, costs, etc. of AWS resources

ZEFamazon ? » - * *

00 webservices 1AM EC2 Lambda API

Roles Gateway

Project Objectives

Develop PODPAC, an open-source, Python library, which
removes major barriers to widespread exploitation of
EOSDIS and other earth science data on the cloud

Automate geo-data wrangling for integrated analyses of

disparate data sources in a plug-and-play manner

Enable data scientists to easily transition workstation
analyses to massively distributed processing on AWS

Facilitate generation and sharing of reproducible and
documented earth science data products and algorithms

PODPAC is open-source software available at
https://podpac.org

Wanted: Testers, early adopters, contributors and feedback

Acknowledgment

This research is supported by NASA under SBIR
Phase |l Contract No. SONSSC18C0061

Glacier Route 53

Open Source Development

Readily develop integrated geospatial
analyses and analytics on your workstation

00C
1

Encapsulated Local and
Remote Data Sources

Pipeline for Observational Data
Processing, Analysis, and Collaboration

Seamlessly transition to scalable, massively

distributed processing on the cloud

web services

Plug-and-Play

User Algorithms |
Documented Earth ?

Science Data Products

v Use of Python and Jupyter Notebooks
reduces software learning curve for new users — Jupyter

v Local and remote data (OPeNDAP, WCS, etc.) are
encapsulated in common API wrapper for plug-and-play
integration within user-specified algorithms

v Automated data wrangling handles differences in
geospatial CRS, projections, resolution, formats, etc.

Data Structures
O

Geospatial CRS and Projections

O Q0000

o ©9000O0

O00O0O0

O00O0O0

® O00O0O0

Data along Data at points Gridded data

a path

v' Generated data products automatically record data
provenance (sources, algorithms, versions) for
reproducibility and documentation via JSON metadata

v JSON metadata enables direct deployment and

execution of PODPAC algorithm pipelines on AWS

v PODPAC-enabled “serverless” AWS Lambda functions
avoid provisioning and maintenance of cloud servers

v PODPAC Lambda functions automatically scale up to

1024 parallel computational processes

v Processing on AWS “close to data storage” improves

performance and avoids costly egress charges

v Migrating earth science data users to
AWS helps address NASA's looming

challenges in dealing with massive
earth science data volumes

2020
2021

“Serverless” SMAP Downscaling

SMAP File
' SMAP File
' SMAP File

Data from NSIDC Servers

Data from WCS Server

Wilting Point (0,,) Porosity (p) TWI (2)

Downscaled
Soil Moisture (0)

p—@

~(A-1)

SMAP Downscaling Using PODPAC

In a Jupyter Notebook

In [3]:

In [4]:

In [7]:

In [8]:

: 1 downscaled sm = podpac.algorithm.Arithmetic({A=smap, B=twi, C=twi bar, D=porosity, E=wilt,

Create PODPAC nodes for accessing NSIDC data via OPeNDAP

import podpac # Make the “PODPACY Library available to Python
! smap = podpac.datalib.smap.5MAF(interpolation="bilinear’, cache type='disk’)
3 wilt = podpac.datalib.smap.SMAPWilt(interpolation="'bilinear', cache_ type="disk"')
4 porosity = podpac.datalib.smap.SMAPPorosity(interpolation="bilinear’, cache type='disk’)

Create PODPAC node to access topographic wetness index (TWI) from a WCS server

1 twi = podpac.data.WC5{source=podpac.utils.load setting{ 'WC5 URL"),
2 layer name=podpac.utils.load setting('TWI'),
interpolation="nearest"’)

Reproject high resolution TWI onto low resolution SMAP grid

1 +twi bar = podpac.data.ReprojectedSourc {5

=tw
eprojecte d_cnardinatez:gmap-shared_cnardinatEEJ
nterpolation='bilinear")

Define downscaling algorithm
egn="A + (D - E) 7 13.8 * (B - C)")

Specify geospatial region and datetime of interests

coordinates = podpac.Coordinates{[podpac.clinspace(4l., 48., 91&),
podpac.clinspace(-77, =76, 916),
"2017-89-83T12:00:88'], dims=["lat’, "lon’, 'time’])

Evaluate downscaling algorithm on local workstation

1 downscaled sm.eval(coordinates)

Evaluate downscaling algorithm via AWS Lambda functions

1 lambda node = podpac.core.managers.aws lambda.lambda(source=downscaled sm)
72 downscaled soil moisture = lambda node.eval{coordinates)

