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Abstract

Coal combustion aerosol particles contribute to the concentrations of ice-nucleating particles (INPs) in the atmosphere. Es-
pecially, immersion freezing can be considered as one of the most important mechanisms for INP formation in supercooled
tropospheric clouds that exist at temperatures between 0°C and -38°C. The U.S. contains more than 550 operating coal-burning
plants consuming 7.2 x 10”8 metric tons of coal (in 2016) to generate a total annual electricity of >2 billion MW-h, resulting
in the emission of at least 4.9 x 10”5 metric tons of PM10 (particulate matter smaller than 10 ym in diameter). In Texas
alone, 19 combustion plants generate 0.15 billion MW-h electricity and >2.4 x 10"4 metric tons of PM10. Here we present the
immersion freezing behavior of combustion fly ash and bottom ash particles collected in the Texas Panhandle region. Two types
of particulate samples, namely <45 um sieved bottom ash (B_Ash - TX_PH) and <45 um sieved fly ash (F_Ash_TX_PH), were
prepared. Afterwards, their immersion freezing abilities were measured using the Cryogenic Refrigerator Applied to Freezing
Test (CRAFT) system covering the heterogeneous freezing temperature down to -30 °C. The results were generated and are
reported through two metrics, frozen fraction, ffrozen(T), and ice nucleation active site density per unit mass, nm(T) as a
function of temperature. Our preliminary results show that an onset increase in ffrozen(T) for B_LAsh-TX_PH (ffrozen) occurred
as high as at -15°C, whereas the onset for F_Ash_TX_PH is at -18°C. Secondly, B_Ash_TX_PH exhibited a higher nm(-20 °C) of
10°5 g”-1 than that of F_Ash_ TX_PH ( 5 x 10°3 g"-1). On the other hand, previous studies on different combustion ash samples
have reported that the opposite trend (i.e., ice nucleation efficiency of fly ash is greater than that of bottom ash; Grawe et al.,
2016, ACP; Umo et al., 2015, ACP). We will discuss possible reasons for the observed differences. In addition, the results of
complementary physico-chemical analyses via X-ray diffraction technique, Raman microscopy and scanning electron microscopy

on both ash types will also be presented to relate the crystallographic and chemical properties to their ice nucleation abilities.
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XRD pattern of F_Ash_TX_PH XRD patternof B_Ash_TX_PH 1=Quartz

Immersion freezing is a primary pathway for the development of ice nucleating particles (INPs) in Immersion freezing experiments using super-microliter-sized droplets (Sul) were performed in a Si0, 1= Quartz 2 = Anorthite
super-cooled water droplets in the atmosphere, which can impact local weather and public health clean booth on a Al cold-stage L_Jsing the Cryoge.nic Refrigerator Applied. to Freezing Test Sy_stem 7 = Mullite ! 3 = Mullite
(i.e. hail formation and air quality). The diversity and quantity of INPs has influenced investigation (CRAFT) (Tobo, 2016) at a cooling rate of 1°“/min. The CRAFT system is located at the National 3 = Hematite 4 = Hematite
into the physico-chemical properties of coal combustion ash. We examined the molecular Institute of Polar Research (NIPR) in Tachikawa, Japan. Visual analysis for ice nucleated 4 = Belite | CaAl;Si;04 5 = Belite
composition, nanoscale surface morphology, and freezing efficiency for two by-products of coal droplets was determined for every 0.5°“ based on transparency of droplets. Fe,0; | | AlSi,0,
combustion relevant to the local Texas Panhandle region, specifically fly ash (F_Ash _TX PH) and 2 54 CaZSioJ Fe,
bottom ash (B_Ash_TX PH) (sieved to <45um). We demonstrate the diversity between the coal Mm@;@%“
combustion ash by-products and their effect on ice nucleation efficiency.
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XRD patterns indicate minerology phases and intensity for F_Ash TX PH and B_Ash TX PH. A key difference is the presence of
anorthite (CaAl,Si,Og4 ) in B_Ash_TX_PH
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Fig. 9 Scanning electron microscopy image Fig. 10. Scanning electron microscopy image Fig. 11. Scanning electron microscopy

B Ash TX PH are similar in composition consisting of F_Ash_TX_PH_02 of F_Ash_TX_PH_02 (24hrs in suspension) image of B_Ash_TX_PH_02
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Preserved coal fly ash and bottom ash samples were first dried at room temperature ~20°C for 48 hours.

Secondly, the ash samples were sieved to < 45um diameters in a 3-stage cascade of New Perlon Sieves (< |Ce Nucleation (Time Trials)
1000pum - < 180um =2 < 45um) using a Retsch AS200 Sieve Shaker. These samples were used for the
further investigations namely F_Ash_TX PH 02 and B_Ash _TX PH_02. Suspension were prepared in a
known volume of Milli-Q purified water (18.2 MQ cm resistivity, TOC < 4ppb) using a known mass to Only Organic (%) 0 2

1 1
create a 1 mg/mL mass concentration (0.1wt%) then diluted tenfold based on each specific experiment. 0.9 : ‘ l ‘ l ‘ 5% Only Inorganic (%)| 12.5 33 57 33 15
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Temperature (°C) Fig. 7(a). Fraction of 3uL droplets frozen as a function of temperature of fly ash from the Texas Panhandle at a mass concentration of 1 mg/mL ~ . o
Fig. 3. Fraction of frozen droplets as a function of temperature 0.1wt% over a period of 0 days, 1 day, 1 week, and 6 months. (b) Also shown is fraction of 3uL droplets frozen as a function of temperature of bottom B_ASh_TX_PH is a more efficient INP as
carried out by Tobo (2016) using the CRAFT system (a) images ash from the Texas Panhandle. compared to F_Ash_TX_ PH
captured by convention WEB camera (b) fraction of frozen
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