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Abstract

In this study, we use a doubly stochastic model to develop a short-term eruption forecasting method based on precursory
signals. The method enhances the Failure Forecast Method (FFM) equation, which represents the potential cascading of
signals leading to failure. The reliability of such forecasts is affected by uncertainty in data and volcanic system behavior and,
sometimes, a classical approach poorly predicts the time of failure. To address this, we introduce stochastic noise into the
original ordinary differential equation, converting it into a stochastic differential equation, and systematically characterize the
uncertainty. Embedding noise in the model can enable us to have greater forecasting skill by focusing on averages and moments.
In our model, the prediction is thus perturbed inside a range that can be tuned, producing probabilistic forecasts. Furthermore,
our doubly stochastic formulation is particularly powerful in that it provides a complete posterior probability distribution,
allowing users to determine a worst-case scenario with a specified level of confidence. We verify the new method on simple
historical datasets of precursory signals already studied with the classical FFM. The results show the increased forecasting skill
of our doubly stochastic formulation. We then present a preliminary application of the method to more recent and complex

monitoring signals.



University

at Buffalo
ISTITUTO NAZIONALE The State University

DI GEOFISICA E VULCANOLOGIA of New York

Volcanic eruption time forecasting using a

stochastic enhancement of the Failure Forecast Method

Andrea Bevilacquat!43), Abani Patra®%), E. Bruce Pitman®), Marcus Bursik(?), Flora Giudicepietro®), Giovanni Macedonio(®), Augusto Neri(), Greg Valentine(?

A ' l l 00 ADVANCING
Lou EARTHAND

FALL MEETING

Washington, D.C. | 10-14 Dec 2018

Paper Number V23G - 0155
Abstract ID: 413317

(1) INGV, Sezione di Pisa, Pisa, Italy; (2) Department of Earth Sciences, UB, Buffalo, NY; (3) Computational Data Sciences and Engineering Program, UB, Buffalo, NY,; (4) Department of Mechanical and Aerospace Engineering, UB, Buffalo, NY; (5) Department of Material Design and Innovation, UB, Buffalo, NY; (6) INGV, Osservatorio Vesuviano, Napol, Italy.

assumption, more fundamental relations between rock fracture and deformation  Fjg 1. Schematic example of linear regression
imply time dependent changes in the power law properties (Robertson&Kilburn,  5f inverse rate of cascading signals (modified
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The Failure Forecasts method (FFM) is a well-established tool in the interpretation L\ peak rate  onset ]« varying stress on the system, or temperature (Kilburn, 2012)
of monitoring data as possible precursors, providing quantitative predictions of the 20 - = o' 7 e« the superposition of signals originating from different causes (Salvage&Neuberg, 2016)
eruption onset t,, commonly represented by inverse rate plots (Voight, 1988; 1989 |, Q\ delay 1« heterogeneity in the breaking material, producing changes in the signals (Vasseur et al., 2015).
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oZ 15+ v - In addition, the statistical fitting of model parameters can be poorly constrained (Bell et al., 2011).
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a large-scale rupture of materials culminating at the failure time t.. The equation | 1 In this study, we enhance the classical FFM by systematically characterizing the uncertainty. We
was originally developed in landslide forecasting (Fukuzuno, 1985). = 10r e o e 7 incorporate stochastic noise in the equations, and a mean-reversion property to constrain the noise.
FFM has been retrospectively applied to several volcanic systems, including dome : 1 We describe three different methods for estimating t,, the ODE-based Method 1, the new SDE-based
forming and explosive eruptions (Voight&Cornelius, 1991; Voight et al., 2000). 5 [ 1 Method 2, and their combined doubly stochastic formulation Method 3.
Seismic data are the type of signals most extensively studied with the method nverserateat L\ _ _ _ . o .
(Cornelius&Voight, 1994: Ortiz et al., 2003; Budi-Santoso et al., 2013). [ eruption omset ... oo e Doubly stochastic models descrlbfe the effect of epistemic uncertainty in the formulation of aleatory
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Laboratory experiments and theoretical models demonstrated the use of the FFM 0 S 10 | 1‘27”
under constant stress and temperature (Hyman et al., 2018). Without this TIME :windofw: We retrospectively test the enhanced FFM over four datasets (Voight, 1988). They refer to: Mt. St.

Helens, 1981-82 (Swanson,1982), Bezymyanny, 1960 (Tokarev, 1966), Mt. Toc, 1963 (Miiller, 1964).
The last dataset is the landslide above the Vajont Dam in Italy (Kilburn&Petley, 2003). Finally we
show a preliminary application to present-day earthquake count at Campi Flegrei caldera.

2. Example of retrospective estimators

Log-rate vs Log-acceleration Technique (LLT), and Hindsight Technique (HT) are classical estimators of a (Cornelius & Voight, 1995).
LLT is less accurate than HT and needs a second order derivative of data. HT needs to know t,and can only be used retrospectively.
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When the forecast is poorly constrained, Method 2 typically reduces the uncertainty affecting t;, compared to Method 1. It tends to give a o - o -

correct forecast only when the eruption is close. The doubly stochastic formulation of Method 3 appears to have an impact.

Method 3 mean forecasts provide consistent likelihoods with Method 1 (Fig. 11). The 95 percentile values are significantly higher than Method 1, ODE (black) Method 3, doubly stochastic SDE

Method 2, SDE (colors) mean (full bar) and 95" percentile (shaded)

other forecasts, from 5% to 10% in the first and second time windows, and above 15% in the third.

We assume y=1/15 days. This is a choice based on the empirical observation that the total length of temporal sequence is at the scale of 45
days, and the duration of well-aligned observations is at the scale of 15 days. Doubled or halved y produced minor effects on the results.

Fig 11. Column plots of the likelihood g(t.), in two forecasting examples, on three
different time windows. In plot (a) the black bars assume Method 1, the colored bars
Method 2. Plot (b) assumes Method 3, and the full bars are the mean values, and the

shaded bars are the 95t percentile values of the likelihood.

4. Preliminary application to present-day unrest

Campi Flegrei 2007-2018, reference station STH

Campi Flegrei caldera is characterized by prolonged unrest. Since 1950, it has undergone

g e Fig 12. four episodes of caldera-wide uplift and seismicity, which raised the central region by 4.5
Cumulative m (Troise et al., 2019).
~ number of
88+ j 2 | earthquakes After about 20 years of subsidence, following the uplift peak reached in 1984, the caldera
g 2l | measured in started a new, low rate uplift episode, accompanied by low magnitude increasing
4 !,J y Campi Flegrei seismicity (Fig. 12) and marked geochemical changes in fumaroles. Although the
% S l_/ (Italy) from interpretation of the current unrest is a matter of debate, Campi Flegrei may be evolving
7 rt 15t Jan 2007 towards conditions more favorable to eruption (Kilburn et al., 2017)
é 3 ’__._,J tol0™ Sep We focus on the earthquake count after 2007, available on www.ov.ingv.it. Seismicity is
e I' ! 2?18 STH characterized by repeated swarms, superimposed on a background rate (Chiodini et al.,
[' ' >tation, 2017). Swarms are believed to be related to fluid-transfer episodes (D'Auria et al., 2011).
o r - £Q number = 2021| | AgNaNo. Further analysis may test the effect of separating the swarms from background rate.
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In Figure 13 we test our Method 3 on this seismic dataset. We
remark that the time window is much longer than in the classical
applications, and spans over 50 years.

The interpretation of t; as the onset of a volcanic eruption is purely
speculative. However, it is the time when accelerating signals as
observed in the last 10 years will diverge to infinity. A few pauses in
the seismic rate are filtered out, and are reported in Fig.13a,c.
Locally decreasing rates prevent the LLT to calculate a, and we
uniformly sampled a in [1.4, 2.0]. Here y = 1/120 days.

Estimates of t; are in [2019, 2032] with 90% chance, at the scale of
0.02% probability per day. These are robust against the choice of
the bin on which the rate is calculated (Fig. 13a,b). However, if we
consider only the last 5 years, they become sensitive to that choice.

Fig 13. Forecasts of t;based on Method 3. In (a,b) based on the data
of 2008-2018, in (c,d) 2013-2018. In (a,c) the inverse rate is obtained
on 120 days, in (b,d) on 360 days. Red points are inverse rate data.

The green line is mean value of g,,, the probability/day scale bar is
related to it. Dashed lines mark its 51" and 95t percentiles.

Thin blue dashed lines bound the 90% confidence interval of the
ODE paths of 1/X, and a thin line is the mean path. Grey dotted liner
display 50 sample paths of the SDE solution after 10 Sep 18.
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5. Conclusions

We have introduced a new method for performing short-term eruption
forecasting, when eruption onset is related to a rupture of materials.

e The method enhances the well known FFM equation. We allow random
excursions from the classical solutions. This provides probabilistic forecasts
instead of deterministic predictions, giving the user critical insight into a range
of failure or eruption dates, and allowing retrospective evaluation and
improvement of forecasting methodology.

* QOur doubly stochastic formulation can consider the “worst case scenario” with
a probability of occurrence of at least 5%. This was not possible in the classical
formulation.

 We tested the method on historical datasets of precursory signals. The data
show the increased forecasting skill of the doubly stochastic formulation,
expressed as the likelihood in the day of the actual eruption.

* We also described an assessment of failure time on present-day unrest signals.
The new formulation enables the estimation on longer time windows of data,
locally including the effects of variable dynamics.

This approach is the subject of ongoing and future work, with the purpose to
further testing forecasting robustness, for example, exploring the sensitivity on a
linear evolution of a with time, or a more general structure of the noise.
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