Developing a Glacial Surface Model for Greenland to Improve the Projections of Surface Runoff

LingLing Dong¹, David Porter², Marco Tedesco³, and Patrick Alexander⁴

¹Lamont -Doherty Earth Observatory ²Lamont-Doherty Earth Observatory ³Columbia University ⁴Columbia University of New York

November 22, 2022

Abstract

Over the past several decades, the Greenland Ice Sheet has been losing mass through a combination of increased surface runoff and accelerating ice flux to the ocean. Our understanding of the surface component is drawn heavily from satellite observations and climate models. The MAR (Modèle Atmosphère Régional) model is a 3D regional climate model used extensively over Greenland. Our study focuses on the surface snow and the ice down to 15-meter in depth. A light-weighted surface model for us to integrate the local observation data and force many simulations is needed. Our goal is to implement a surface-only model, derived from MAR, as a tool for understanding the glacial surface components, correlations, and MAR biases to improve projections of surface runoff. This model includes the ability to integrate observations from surface weather stations, translate the data into a model forcing format, force different simulations with various configurations or datasets, visualize model outputs, find key correlations between atmospheric drivers and modeled firn densification. In the model development, we extract the surface code from the original MAR for the simulations initialized and forced with the following snow and atmospheric fields: snow depth, temperature, density, water volume, and grain size. We then verify that the surface model generates the same outputs as the full MAR does if fetched with the identical data. The bias is checked with snowpack time-depth plots for multiple sites around Greenland, including Summit and Swiss Camp. We have found a very small bias when compared to the fully-coupled MAR. We perform quality control for the data inputs, such as replacing missing data from the station measurements, defining the max and min for each dataset, filtering out the data outliers by statistics standard deviations. As the result, our model software can provide multiple simulations in sequential and concurrent mode with user-friendly interfaces, and run robustly. The model's first release is currently being deployed over different sites across Greenland to understand the importance of atmospheric forcing versus snow model biases in projections of future mass loss due to surface melt.

Integrate Observation Data into the MAR-L Simulation

The data we obtained from the observation stations is the real measure. Taking in the data into the MAR-L model and forcing the data in the simulations, the results show us the reality of the snow and ice surface runoff and melting. Integrating the station data, we need to ensure the station data quality by QC procedures, to do math interpretations to generate a new data set to match the MAR-L data length, and to replace the original MAR simulated data with the new station data set.

C33F-1627 Also Refer to Poster-C131-1246

Developing a Glacial Surface Model for Greenland to Improve the Projections of Surface Runoff

 David Porter
Marco Tedesco
Patrick Alexander LingLing Dong Lamont Earth Observatory Of Columbia University

Over the past several decades, the Greenland Ice Sheet has been losing mass through a combination of increased surface runoff and accelerating ice flux to the ocean. Our understanding of the surface component is drawn heavily from satellite observations and climate models. The MAR (Modèle Atmosphère Régional) model is a 3D regional climate model used extensively in Greenland because of its proven record at simulating precipitation and firn and snowpack evolution over glaciated surfaces. Our study focuses on the surface snow and the ice down to 15-meter in depth. A light-weighted surface model for us to integrate the local observation data and force many simulations is needed. Our goal is to develop a surface-only model, derived from MAR, as a tool for understanding the glacial surface components, correlations, and MAR biases to improve projections of surface runoff. This model includes the ability to integrate observations from surface weather stations, translate the data into a model forcing format, between atmospheric drivers and modeled firn densification.

force different simulations with various configurations or datasets, visualize model outputs, find key correlations In the model development, we extract the surface code from the full MAR for the simulations initialized and forced with the following snow and atmospheric fields: snow depth, temperature, density, water volume, and grain size. We then verify that the surface model generates the same outputs as the full MAR does if fetched with the identical data. The bias is checked with snowpack time-depth plots for multiple sites around Greenland, including Summit and Swiss Camp. We have found a very small bias when compared to the fully-coupled MAR. We perform quality control for the data inputs, such as replacing missing data from the station measurements, defining the max and min for each dataset, filtering out the data outliers by statistics standard deviations. As the result, our model software can provide multiple simulations in sequential and concurrent mode with user-friendly interfaces, and run robustly. The model's first release is currently being deployed over different sites across Greenland to understand the importance of atmospheric forcing versus snow model biases in projections of future mass loss due to surface melt

Figure-1 Overview of MAR-L and Interfaces with MAR-3D

References:

- Glaciology, 35, 121, 333-342.
- 128, 13-22.
- Geophys. Res., 108, D8, 4231, doi: 10.1029/2001JD001160.
- climate MAR model. The Cryosphere, 11, 1015-1033, doi: 10.5194/tc-11-1015-2017.

Plots of Outputs

The output plots will be generated in the production stream automatically for the studies in the visualized images. MAR-L model plans to perform data integration, QC, simulations, and data visualization in a run.

1. Brun, E., Martin, E., Simon, V., Gendre, C., & Coleou, C. (1989) An energy and mass model of snow cover suitable for operational avalanche forecasting. J.

2. Brun, E., David, P., Sudul, M., & Brunot, G. (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciology, 38,

3. Lefebre, F., Gallée, H., J.-P. van Yperesele, & W. Greuell (2003) Modeling of snow and ice melt at ETH Camp (West Greenland): A study of surface albedo. J.

4. Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel C., et al. (2017) Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional

5. Steffen, K., Box, J. E. & Abdalati, W. (1996) Greenland Climate Network: GC-Net, in: CRREL 96-27 Special report on glaciers, ice sheets and volcanoes, trib. To M. Meier, edited by Colbeck, S. C., US Army Cold Regions Research and Engineering Laboratory (CRREL), Hanover, New Hampshire, USA, 98-103.