loading page

Congestus mode invigoration by convective aggregation in simulations of radiative-convective equilibrium
  • Adam B Sokol,
  • Dennis L. Hartmann
Adam B Sokol
University of Washington

Corresponding Author:[email protected]

Author Profile
Dennis L. Hartmann
University of Washington
Author Profile

Abstract

This study examines how the congestus mode of tropical convection is expressed in numerical simulations of radiative-convective equilibrium (RCE). We draw insights from the ensemble of cloud-resolving models participating in the RCE Model Intercomparison Project (RCEMIP) and from a new ensemble of two-dimensional RCE simulations. About half of the RCEMIP models produce a congestus circulation that is distinct from the deep and shallow circulation modes. In both ensembles, congestus strength is associated with large-scale convective aggregation. Aggregation dries out the upper troposphere, which allows moist congestus outflow to undergo strong radiative cooling. The cooling generates divergence that promotes continued congestus overturning (a positive feedback). This mechanism is fundamentally similar to the driving of shallow circulations by radiative cooling at the top of the surface boundary layer. Aggregation and congestus invigoration are also associated with enhanced static stability throughout the troposphere. Changes in entrainment cooling are found to play an important role in stability enhancement, as has been suggested previously. A modeling experiment shows that enhanced stability is not necessary for congestus invigoration; rather, invigoration itself contributes to midlevel stability enhancement via its impact on the vertical profile of radiative cooling. When present, congestus circulations have a large impact on the mean RCE atmospheric state; for this reason, their inconsistent representation in models and their impact on the real tropical atmosphere warrant further scrutiny.