loading page

Seismic structure of the St. Paul Fracture Zone and Late Cretaceous to Mid Eocene oceanic crust in the equatorial Atlantic Ocean near 18°W
  • +6
  • Kevin Growe,
  • Ingo Grevemeyer,
  • Satish Chandra Singh,
  • Milena Marjanovic,
  • Emma PM Gregory,
  • Cord Papenberg,
  • Venkata Abhishikth Vaddineni,
  • Laura Gómez de la Peña,
  • Zhikai Wang
Kevin Growe
GEOMAR Helmholtz Centre for Ocean Research Kiel, GEOMAR Helmholtz Centre for Ocean Research Kiel, GEOMAR Helmholtz Centre for Ocean Research Kiel

Corresponding Author:[email protected]

Author Profile
Ingo Grevemeyer
GEOMAR Helmholtz Centre for Ocean Research Kiel, GEOMAR Helmholtz Centre for Ocean Research Kiel, GEOMAR Helmholtz Centre for Ocean Research Kiel
Author Profile
Satish Chandra Singh
Institut De Physique Du Globe De Paris, Institut De Physique Du Globe De Paris, Institut De Physique Du Globe De Paris
Author Profile
Milena Marjanovic
Institut De Physique Du Globe De Paris, Institut De Physique Du Globe De Paris, Institut De Physique Du Globe De Paris
Author Profile
Emma PM Gregory
Institut De Physique Du Globe De Paris, Institut De Physique Du Globe De Paris, Institut De Physique Du Globe De Paris
Author Profile
Cord Papenberg
Geomar, Kiel, Germany, Geomar, Kiel, Germany, Geomar, Kiel, Germany
Author Profile
Venkata Abhishikth Vaddineni
Institut De Physique Du Globe De Paris, Institut De Physique Du Globe De Paris, Institut De Physique Du Globe De Paris
Author Profile
Laura Gómez de la Peña
GEOMAR Helmholtz Centre of Ocean Research, GEOMAR Helmholtz Centre of Ocean Research, GEOMAR Helmholtz Centre of Ocean Research
Author Profile
Zhikai Wang
Institut De Physique Du Globe De Paris, Institut De Physique Du Globe De Paris, Institut De Physique Du Globe De Paris
Author Profile

Abstract

Plate tectonics characterize transform faults as conservative plate boundaries where the lithosphere is neither created nor destroyed. In the Atlantic, both transform faults and their inactive traces, fracture zones, are interpreted to be structurally heterogeneous, representing thin, intensely fractured, and hydrothermally altered basaltic crust overlying serpentinized mantle. This view, however, has recently been challenged. Instead, transform zone crust might be magmatically augmented at ridge-transform intersections before becoming a fracture zone. Here, we present constraints on the structure of oceanic crust from seismic refraction and wide-angle data obtained along and across the St. Paul fracture zone near 18°W in the equatorial Atlantic Ocean. Most notably, both crust along the fracture zone and away from it shows an almost uniform thickness of 5-6 km, closely resembling normal oceanic crust. Further, a well-defined upper mantle refraction branch supports a normal mantle velocity of 8 km/s along the fracture zone valley. Therefore, the St. Paul fracture zone reflects magmatically accreted crust instead of the anomalous hydrated lithosphere. Little variation in crustal thickness and velocity structure along a 200 km long section across the fracture zone suggests that distance to a transform fault had negligible impact on crustal accretion. Alternatively, it could also indicate that a second phase of magmatic accretion at the proximal ridge-transform intersection overprinted features of starved magma supply occurring along the St. Paul transform fault.