loading page

Understanding the response of tropical ascent to warming using an energy balance framework
  • Andrea Michelle Jenney,
  • David Allan Randall,
  • Mark Branson
Andrea Michelle Jenney
Colorado State University, Colorado State University

Corresponding Author:[email protected]

Author Profile
David Allan Randall
Colorado State University, Colorado State University
Author Profile
Mark Branson
Colorado State University, Colorado State University
Author Profile

Abstract

Previous work has established that warming is associated with an increase in dry static stability, a weakening of the tropical circulation, and a decrease in the convective mass flux. Using a set of idealized simulations with specified surface warming and super-parameterized convection, we find support for these previous conclusions. We use an energy and mass balance framework to develop a simple diagnostic that links the fractional area covered by the region of upward motion to the strength of the mean circulation. We demonstrate that the diagnostic works well for our idealized simulations, and use it to understand how changes in tropical ascent area and the strength of the mean circulation relate to changes in heating in the ascending and descending regions. We show that the decrease in the strength of the mean circulation can be explained by the relatively slow rate at which atmospheric radiative cooling intensifies with warming. In our simulations, decreases in tropical ascent area are balanced by increases in non-radiative heating in convective regions. Consistent with previous work, we find a warming-induced decrease in the mean convective mass flux. However, when we condition by the sign of the mean vertical motion, the warming-induced changes in the convective mass flux are non-monontonic and opposite between the ascending and descending regions.
Jun 2020Published in Journal of Advances in Modeling Earth Systems volume 12 issue 6. 10.1029/2020MS002056