AUTHOREA
Log in Sign Up Browse Preprints
LOG IN SIGN UP

811 geochemistry Preprints

Related keywords
geochemistry ice regional climatology soil sciences trace elements distribution analytical climatology soil science hydrology petrology low temperature geochemistry stratigraphy stable isotopes biological sciences environmental sciences geography hydrometeorology polar meteorology atmospheric sciences education paleoceanography chemical oceanography snow geohydrology climatology (global change) paleoclimatology + show more keywords
soil chemistry volcanology radioastronomy igneous and metamorphic precipitation oceanography synoptic meteorology physical climatology geochronology and radio isotope planetology microbiology organic geochemistry biology atmospheric processes geological surveys meteorology geology
FOLLOW
  • Email alerts
  • RSS feed
Please note: These are preprints and have not been peer reviewed. Data may be preliminary.
Last century warming over the Canadian Atlantic shelves linked to weak Atlantic Merid...
Benoit Thibodeau
Christelle Not

Benoit Thibodeau

and 7 more

August 16, 2018
The Atlantic meridional overturning circulation (AMOC) is a key component of the global climate system. Many models predict a weakening or even a collapse of the AMOC under future climate change. Recent studies suggested a 20th century weakening of the AMOC of unprecedented amplitude ( 15%) over the last millennium. Here, we present δ18O of benthic foraminifera in a sediment core from the Laurentian Channel and demonstrate that the δ18O trend is linked to the strength of the AMOC. In this 100-year record, the AMOC signal decrease steadily to reach its minimum value in the late 1970’s. The weakest AMOC signal is constant until 2000. We present a longer δ18O record of 1,500 years and highlight the uniqueness of these high δ18O values over that period. Moreover, the long record is also characterized by statistically heavier δ18O during the Little Ice age suggesting a relatively weak AMOC.
Rapid, concurrent formation of organic sulfur and iron sulfides during experimental s...
Morgan Raven
Richard G. Keil

Morgan Raven

and 2 more

September 10, 2021
Organic matter (OM) sulfurization can enhance the preservation and sequestration of carbon in anoxic sediments, and it has been observed in sinking marine particles from marine O2-deficient zones. The magnitude of this effect on carbon burial remains unclear, however, because the transformations that occur when sinking particles encounter sulfidic conditions remain undescribed. Here, we briefly expose sinking marine particles from the eastern tropical North Pacific O2-deficient zone to environmentally relevant sulfidic conditions (20C, 0.5 mM [poly]sulfide, two days) and then characterize the resulting solid-phase organic and inorganic products in detail. During these experiments, the abundance of organic sulfur in both hydrolyzable and hydrolysis-resistant solids roughly triples, indicating extensive OM sulfurization. Lipids also sulfurize on this timescale, albeit less extensively. In all three pools, OM sulfurization produces organic monosulfides, thiols, and disulfides. Hydrolyzable sulfurization products appear within ≤ 200-m regions of relatively homogenous composition that are suggestive of sulfurized extracellular polymeric substances (EPS). Concurrently, reactions with particulate iron oxyhydroxides generate low and fairly uniform concentrations of iron sulfide (FeS) within these same EPS-like materials. Iron oxyhydroxides were not fully consumed during the experiment, which demonstrates that organic materials can be competitive with reactive iron for sulfide. These experiments support the hypothesis that sinking, OM- and EPS-rich particles in a sulfidic water mass can sulfurize within days, potentially contributing to enhanced sedimentary carbon sequestration. Additionally, sulfur-isotope and chemical records of organic S and iron sulfides in sediments have the potential to incorporate signals from water column processes.
Inter-analyst comparison and reproducibility of apatite fission track analysis
Murat Tamer
Ling Chung

Murat Tamer

and 3 more

September 11, 2021
Factors influencing data reproducibility of fission-track (FT) thermochronology can be summarized into three main categories associated with data acquisition steps. (1) Sample preparation involves mineral separation, mounting, polishing and etching; (2) data revelation relates to instrumentation (microscope, LAICPMS, etc.) and software settings; and (3) execution depends on feature selection by the analyst. Previous committee reports and studies (Hurford A.J. 1990; Ketcham et al. 2009; Ketcham et al. 2015; Ketcham et al. 2018) have contributed significant insights into the reproducibility of fission-track data by comparing length and age measurements produced by several laboratories using their own preparation and revelation procedures. A recent attempt to isolate analyst-specific factors in length measurement using an image-based approach (Tamer et al. 2019) found that when two analysts observe the same feature and agree it is a valid track, measurement reproducibility was very good, though impacted by etching. Dispersion of individual length measurements was 0.7-1.0 µm (2 for weaker etching and 0.5-0.8 µm for stronger etching, but mean lengths were always within 0.1 µm of each other. Where the analysts disagreed more significantly, however, was in finding tracks and evaluating whether they were valid, sufficiently clear, and sufficiently etched for measurement, which led to differences of up to ~0.8 µm in mean track length. This study builds on the image-based approach to encompass more aspects of the measurement process and increase the number of analysts being compared. We will look at confined track selection in greater detail, and also study analyst decisions behind age determination, including the selection of the region of interest for counting, and identification of grain-surface features as tracks appropriate for counting. Reflected and transmitted light image stacks for 41 grains and graticules are available on a cloud platform Participants will carry out analyses of these images using their preferred approach, e.g. suitable analytical software, manual measurements or AI-based analysis. A limited license for FastTracks (v3.2) will be available for those who would like to participate but do not have measurement software. Analysts are asked to fill out a questionnaire about their fission track experience, conduct track density estimations, confined track length and Dpar measurements, and especially provide comments on all grains being analyzed or skipped. FastTracks users are asked to send the .xml files produced by the software, while other participants are asked to submit the results using a template. The results will be entirely anonymous unless the analyst states otherwise. The deadline for the submission of the results is June 1st, 2022. The results will be shared on 18th International Conference on Thermochronology.
Sustainable source analysis process of soil heavy metal pollution combining with PMF...
Zhe Wang
Hu Jiang

Zhe Wang

and 7 more

May 28, 2020
In this study, 27 soil samples were collected for laboratory pretreatment and the total concentration of heavy metal Cd, Cr, Cu, Ni, Pb, Zn, As and Hg was measured. Pearson correlation analysis was carried out on the measured data after removing outliers, and the comparison groups with a significant correlation at the level of 0.01 between the concentration of several groups of elements were obtained. In order to identify effectively source of soil heavy metals by PMF analysis (Positive Matrix Factorization), we drew the location map in the study area and the concentration distribution of heavy metals. Combining Pearson correlation analysis, distribution of heavy metal concentration and PMF analysis, we obtained convincing identification results of heavy metal sources. With C# language and ArcGIS Engine development components, we developed a soil heavy metal database management system to manage the spatial and attribute data needed in source apportionment for soil heavy metals, which will provide data support for the latter sustainable research. In this paper, we proposed a sustainable heavy metal pollution identification research process, SSAPD (sustainable source analysis process based on database), which includes data collection in the field, laboratory measurement, pretreatment, PMF pollution source analysis and database establishment. The process can not only effectively identify the source of soil heavy metal pollution, but also realize the continuity of research and the sharing of data.
High Subcritical Water for the syn-Formation of Ferric Minerals and Molecules of Life
Marie Paule Bassez

Marie Paule Bassez

June 27, 2019
Considering the theme for AbSciCon 2019: “Understanding and Enabling the Search for Life on Worlds Near and Far”, it is worth to set the emphasis on ferric minerals and show that their formation in the absence of oxygen does not require the necessary presence of microorganisms but can occur during the alkaline interaction of ferrous silicates rocks with water in conditions of temperature and pressure near the critical point. The results show that molecules of life can form in a path which is concomitant to this specific water-rock interaction and that organic matter of biological interest can form inside inclusions in the produced minerals. The knowledge about the formation of ferric iron in anoxic alkaline conditions may be important for the understanding of the Earth oxygenation and of extraterrestrial objects such as Enceladus. It is concluded that the search for the molecules of life may be connected to the search of amorphous silica, quartz, ferric oxides, amorphous and crystalline ferric silicates, in association with siderite. The observation of ferric minerals on early Earth and extraterrestrial objects does not mean that life had already emerged at the time of formation of the minerals.
Handheld ED-XRF spectrometers in geochemical investigation - the comparative studies...
Lidia Kozak
Juliana Silva Souza

Lidia Kozak

and 6 more

April 27, 2021
This study presents the determination of the content of selected metals: Ba, Ca, Fe, Nb, Rb, Sr, Y, Zn, Zr in postglacial deposits from two glacial valleys (Ebbadalen and Elsadalen) in the Petunia Bay (southern Spitsbergen). Deposits analyses were performed using X-ray fluorescence (XRF) in parallel with two portable spectrometers from different manufacturers to investigate the accuracy and reliability of the instruments. The full version of article has been published in Polish Polar Research.
Sediments in sea ice drive the Canada Basin surface Mn maximum: insights from an Arct...
Birgit Rogalla
Susan E. Allen

Birgit Rogalla

and 4 more

June 22, 2022
Biogeochemical cycles in the Arctic Ocean are sensitive to the transport of materials from continental shelves into central basins by sea ice. However, it is difficult to assess the net effect of this supply mechanism due to the spatial heterogeneity of sea ice content. Manganese (Mn) is a micronutrient and tracer which integrates source fluctuations in space and time. The Arctic Ocean surface Mn maximum is attributed to freshwater, but studies struggle to distinguish sea ice and river contributions. Informed by observations from 2009 IPY and 2015 Canadian GEOTRACES cruises, we developed a three-dimensional dissolved Mn model within a 1/12 degree coupled ocean-ice model centered on the Canada Basin and the Canadian Arctic Archipelago (CAA). Simulations from 2002-2019 indicate that annually, 87-93% of Mn contributed to the Canada Basin upper ocean is released by sea ice, while rivers, although locally significant, contribute only 2.2-8.5%. Downstream, sea ice provides 34% of Mn transported from Parry Channel into Baffin Bay. While rivers are often considered the main source of Mn, our findings suggest that in the Canada Basin they are less important than sea ice. However, within the shelf-dominated CAA, both rivers and sediment resuspension are important. Climate induced disruption of the transpolar drift may reduce the Canada Basin Mn maximum and supply downstream. Other micronutrients found in sediments, such as Fe, may be similarly affected. These results highlight the vulnerability of the biogeochemical supply mechanisms in the Arctic Ocean and the subpolar seas to climatic changes.
Sulfur isotopes ratio of atmospheric carbonyl sulfide constrains its sources
Alon Angert
Ward Said-Ahmad

Alon Angert

and 3 more

October 18, 2018
Carbonyl sulfide (COS) is the major long-lived sulfur bearing gas in the atmosphere, and is used to estimate the rates of regional and global (both past and current) photosynthesis. Sulfur isotope measurements (34S/32S ratio, δ34S) of COS may offer a way for improved determinations of atmospheric COS sources. However, measuring the COS δ34S at the atmospheric concentrations of ~0.5 ppb is challenging. Here we present high-accuracy δ34S measurements of atmospheric COS done by gas chromatograph (GC) connected to a multicollector inductively coupled plasma mass spectrometer (MC-ICPMS), after pre-concentrating from 2-liters of air. We showed that the precision of COS δ34S measurement for gas standards is ≤0.2‰, and that N2 and CO2 in the gas standard mixture had no effect on the measured δ34S. Natural air samples were collected in Israel and in the Canary Islands. The COS δ34S values in both locations were found to be 13.2±0.6‰, and are believed to represent the background tropospheric value. This δ34S value is markedly different from the previously reported value of 4.9‰. We estimate the expected isotopic signature of COS sources and sinks, and use the δ34S value of atmospheric COS we measured to estimate that ~48% of it originates from the ocean.
Equitable Exchange: A framework for diversity and inclusion in the geosciences
Lora Harris
Corey Garza

Lora Harris

and 18 more

March 11, 2021
We highlight a mechanism for the co-production of research with local communities as a means of elevating the social relevance of the geosciences, increasing the potential for broader and more diverse participation. We outline the concept of an “equitable exchange” as an ethical framework guiding these interactions. This principled research model emphasizes that “currencies”- the rewards and value from participating in research - may differ between local communities and geoscientists. For those engaged in this work, an equitable exchange emboldens boundary spanning geoscientists to bring their whole selves to the work, providing a means for inclusive climates and rewarding cultural competency.
Transport-reaction dynamics of particulate organic matter and oxygen in riverbed sedi...
Eric Roden
Ecenur Bulur²

Eric Roden

and 7 more

March 26, 2022
This study deals with the riverbed of the Columbia river in the vicinity of the Hanford 300 Area study site in eastern Washington, where fluctuations in river stage take place both naturally (i.e. seasonally) and in conjunction with hydroelectric power dam operations. These fluctuations create conditions conducive to the influx and transport of fine-grained POM (a biological colloid originating from the river water and/or in situ periphyton production), within near-surface riverbed sediments. Although a great deal is known about dissolved organic matter (DOM) transport and metabolism in hyporheic zone sediments, there is a paucity of quantitative information on POM dynamics and its influence on hyporheic zone biogeochemistry (e.g. dissolved oxygen dynamics). We have developed a hydrobiogeochemical model capable of simulating the transport and metabolism of POM and its impact on dissolved oxygen (DO) distribution within the riverbed as influenced by periodic changes in river stage and fluid flow rate and direction. The model was employed as a tool to interpret the results of in situ measurements of POM intrusion into the riverbed made using “POM traps” emplaced within the upper 20 cm of the riverbed, as well as real-time in situ dissolved oxygen concentrations determined with a novel optical sensor buried directly in the riverbed at 20 cm depth. The simulations reproduced the accumulation of fresh POM within the upper few 5 cm of the riverbed observed in field POM trap deployments. Once sufficient surface POM accumulation takes place, an underlying zone of DO depletion develops as a consequence of variation in the rate of fluid exchange and POM/DOM degradation. The model predicted cyclic, hydrologically-driven variations in near-surface DO that are consistent with the results of the in situ DO probe deployments together with parallel measurements of fluid conductivity and hydrologic pressure. Our results suggest a complex interplay between fluid flow rate/direction and DO distribution that has important implication for riverbed biogeochemical dynamics at a variety of scales, as influenced by hydrological variability as well as the relative intensity of POM input and the availability of oxygen and other electron acceptors for microbial metabolism.
Contribution of the Southern Annular Mode to variations in water isotopes of daily pr...
Kanon Kino
Atsushi Okazaki

Kanon Kino

and 3 more

September 15, 2021
Water isotopes measured in Antarctic ice cores enable reconstruction at the first order of the past temperature variations. However, the seasonality of the precipitation and episodic events, including synoptic-scale disturbances, influence the isotopic signals recorded in ice cores. In this study, we adopted an isotope-enabled atmospheric general circulation model from 1981 to 2010 to investigate variations in climatic factors in δ18O of precipitation (δ18Op) at Dome Fuji, East Antarctica. The Southern Annular Mode (SAM), the primary mode of atmospheric circulation in the southern mid-high latitudes, significantly contributes to the isotope signals. Positive δ18Op anomalies, especially in the austral winter, are linked to the negative polarity of the SAM, which weakens westerly winds and increases the southward inflow of water vapor flux. Daily variations in temperature and δ18Op in Dome Fuji are significantly small in the austral summer, and their contribution to the annual signals is limited. The isotope signals driven by the SAM are a locational feature of Dome Fuji, related to the asymmetric component of the large-scale atmospheric pattern.
Diel redox cycle of manganese in the surface Arctic Ocean
Yang Xiang
Phoebe J Lam

Yang Xiang

and 2 more

October 21, 2021
Knowledge of the chemical speciation of particulate manganese (pMn) is important for understanding the biogeochemical cycling of Mn and other particle-reactive elements. Here, we present the synchrotron-based X-ray spectroscopy-derived average oxidation state (AOS) of pMn in the surface Arctic Ocean collected during the U.S. GEOTRACES Arctic cruise (GN01) in 2015. We show that the pMn AOS is less than 2.4 when sampled during the day and more than ~3.0 when sampled at night. We hypothesize that an active light-dependent redox cycle between dissolved Mn and particulate Mn(III/IV) exists during the day-night cycle in the surface Arctic Ocean, which occurs on the timescale of hours. The magnitude of observed pMn AOS is likely determined by the net effect of the length of the previous night and integrated light level before the end of pMn sampling.
Towards understanding Deccan volcanism
Stephen Self
tmittal2

Stephen Self

and 3 more

April 14, 2021
Large igneous provinces (LIPs) represent some of the largest volcanic events in Earth history with significant impacts on the ecosystem, including mass extinctions. However, there are some fundamental questions related to the eruption rate, eruption style, and vent locations for LIP lava flows that remain unanswered. In this review, we use the Cretaceous-Paleogene Deccan Traps as an archetype to address these questions since it is one of the best-preserved large continental flood basalt provinces. We describe the volcanological features of the Deccan flows and their potential temporal and regional variations as well as the spatial characteristics of potential feeder dikes. Along with estimates of eruption rates for Deccan lavas from paleomagnetism and Hg proxy records, the Deccan volcanic characteristics suggest a unified conceptual model for the eruption of voluminous (> 1000 km$^3$) LIP lavas with large spatial extent (> 40,000 km$^2$). We conclude the review by highlighting a few key open questions and challenges that can help improve our understanding of how Deccan, as well as LIP flows in general, erupt and flow over long distances.
Southern Ocean oxygenation changes inferred from redox-sensitive trace metals across...
Evan Rohde
Christopher Hayes

Evan Rohde

and 3 more

July 13, 2021
Changes in the circulation of the Southern Ocean are known to have impacted global nutrient, heat, and carbon cycles during the glacial and interglacial periods of the late Pleistocene. Proxy-based records of these changes deserve continued scrutiny as the implications may be important for constraining future change. A record of authigenic uranium from the South Atlantic has been used to infer changes in deep-sea oxygenation and organic matter export over the past 0.5 million years. Since sedimentary uranium has the possible complication of remobilization, it is prudent to investigate the behavior of other redox-sensitive trace metals to confidently interpret temporal changes in oxygenation. Focusing here on the exceptionally long interglacial warm period, Marine Isotope Stage (MIS) 11, we found concurrent authigenic enrichments of uranium and rhenium throughout MIS 12 to 10, overall supporting prior interpretations of low-oxygen periods. However, there are differential responses of Re and U to oxygen changes and some evidence of small-scale Re remobilization, which may involve differences in molecular-level reduction mechanisms. Peaks in authigenic manganese intervening with peaks in Re and U indicate increases in porewater oxygenation which likely relate to increased Antarctic Bottom Water circulation at the onset of MIS11c and during the peak warmth of the interglacial around 400 ka.
Nitrate transport and retention in Western European catchments are shaped by hydrocli...
Sophie Ehrhardt
Pia Ebeling

Sophie Ehrhardt

and 5 more

January 05, 2021
Excess nitrogen (N) from anthropogenic sources deteriorates freshwater resources. Actions taken to reduce N inputs to the biosphere often show no or only delayed effects in receiving surface waters hinting at large legacy N stores built up in the catchments soils and groundwater. Here, we quantify transport and retention of N in 238 Western European catchments by analyzing a unique data set of long-term N input and output time series. We find that half of the catchments exhibited peak transport times larger than five years with longer times being evident in catchments with high potential evapotranspiration and low precipitation seasonality. On average the catchments retained 72% of the N from diffuse sources with retention efficiency being specifically high in catchments with low discharge and thick, unconsolidated aquifers. The estimated transport time scales do not explain the observed N retention, suggesting a dominant role of biogeochemical legacy in the catchments’ soils rather than a legacy store in the groundwater. Future water quality management should account for the accumulated biogeochemical N legacy to avoid long-term leaching and water quality deteriorations for decades to come.
Coordination and competition between soil magnetic particles driven by contrary clima...
Yunfeng Cai
Xiaoyong Long

Yunfeng Cai

and 6 more

May 31, 2021
The ferrimagnetic (FM) and antiferromagnetic (AFM) particles of iron oxides are considered pedogenic and climatic indicators due to their enrichment with comparable increasing in rainfall and temperature. However, the opposite changes in rainfall and temperature result in rapid change of relative humidity (RH), which could lead to their competition and transformation. We examined two soil sequences undergone contrary climate development on the eastern edge of the Tibetan Plateau. The dry and warm climate with low RH favors the coordinative enrichment of AFM hematite and FM particles, while the wet and cool climate with high RH mainly produces goethite but leads to competition between low content AFM hematite and FM particles. The outcome well interprets the changing relationship between color and magnetism in soils and sediments, and suggests that temperature is as important as precipitation in paleoclimate reconstruction based on iron oxides, especially during strong dry-wet cycles and climate pattern shifts.
Hidden Archives of Environmental Change: Application of Mass Spectrometry Methods in...
Igor Pessoa
Luzia Antonioli

Igor Pessoa

and 2 more

January 11, 2021
In coral reef studies, mass spectrometry methods are widely applied to determine geochemical proxies in corals as a tool to evaluate seawater changes. As the coral grows, its skeleton forms annual bands similar to the growth rings found in trees. The density of the calcium carbonate skeletons changes as the water temperature, light, and nutrient conditions change. The elements stored within these bands can provide insight into the changing conditions of seawater over the entire lifetime of the coral, and serve as useful environmental records. Corals incorporate trace elements that can be precisely measured using high-resolution techniques, such as Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). This analytical tool offers high levels of precision to determine the distribution of trace elements along the annual bands of coral skeletons. This approach can serve to monitor fixed-point time-series for water quality research, as well as large-scale observations in ocean science. Ultimately, this procedure can be applied to reconstruct past climate oscillation episodes and/or to quantify the impacts of marine pollution on coral reefs. The benefits of techno-scientific aspects of new and established mass spectrometry applications in coral reef research hold great promise that may continue to be improved in future studies. Given the current climate crisis, this issue requires accurate measurements to increase our understanding on the impacts that have become more frequent and intense.
Climate-modulated nutrient conditions along the Labrador Shelf: Evidence from nitroge...
John Doherty
Branwen Williams

John Doherty

and 4 more

April 06, 2021
The impacts of climate change on North Atlantic nutrient chemistry remain poorly understood, as there exist a multitude of rapidly-changing biological and physical drivers of nutrient conditions throughout the region. Here, we present nitrogen isotope measurements derived from a six-hundred-year-old crustose coralline alga (δ15Nalgal) to elucidate historic and contemporary trends in Labrador Shelf nitrate utilization, defined as the degree of biological nitrate uptake relative to supply. Prior to ~1800, periods during which utilization approached completion corresponded to neutral modes of the Atlantic Multidecadal Oscillation, which we argue promoted favorable oceanographic conditions for simultaneous phytoplankton growth and reduced nitrate input. More recently, nearly-complete utilization occurred concomitantly with a weakened Labrador Current, suggesting reduced nutrient inflow from eastern subpolar waters. These results highlight the role of ongoing climate-induced circulation changes in driving nutrient distributions throughout the subpolar North Atlantic, which may have implications for future fisheries and oceanic carbon storage.
Reorganization of atmospheric circulation between 1400-1700 CE as recorded in a South...
Elena Korotkikh
Paul Mayewski

Elena Korotkikh

and 9 more

January 01, 2020
Here we present an ~2000 year high-resolution glaciochemical record from the South Pole. Significant changes in chemical concentrations, accumulation rate, stable water isotopes and deuterium excess records are captured during the period ~1400-1700 CE, indicating a reorganization of atmospheric circulation that occurred in two steps: ~1400-1425 CE and ~1650-1700 CE. Major declines in dust and SO42- concentrations are observed ~1400 CE suggesting poleward contraction of the southern circumpolar vortex and potential intensification of westerly air flow, accompanied by a sea ice decrease in the Weddell Sea and potentially also in the Indian sector of the Southern Ocean. The changes in stable water isotopes, deuterium excess, NO3- concentration and accumulation rate characterize a second shift in atmospheric reorganization between 1650-1700 CE, reflecting increased marine air mass intrusions and subsequent reduction of the katabatic winds, and a shift to a colder moisture source for South Pole precipitation. These internally consistent changes involving atmospheric circulations and sea ice conditions are also in line with those identified for the recent period, and include associations with the large-scale teleconnections of El Niño Southern Oscillation (ENSO) and the Southern Annular Mode (SAM).
Alteration at the base of the Siccar Point unconformity and further evidence for an a...
Lucy M Thompson
John G. Spray

Lucy M Thompson

and 8 more

April 30, 2022
Chemical data acquired by Curiosity’s Alpha Particle X-ray Spectrometer (APXS) during examination of the contact between the upper Mount Sharp group and overlying Stimson formation sandstones at the Greenheugh pediment reveal compositional similarities to rocks encountered earlier in the mission. Mount Sharp group strata encountered below the Basal Siccar Point group unconformity at the base and top of the section, separated by >300 m in elevation, have distinct and related compositions. This indicates enhanced post-depositional fluid flow and alteration focused along this contact. Sandstone targets exposed immediately above the unconformity have basaltic compositions consistent with previously encountered eolian Stimson formation sandstones, except at the contact, where they show the addition of S. Resistant sandstone outcrops above the contact have higher K, Mn and Na and lower Ni concentrations that primarily reflect changes in provenance. They are compositionally related to cap rock float blocks encountered as Curiosity climbed through the Mount Sharp group, and Bradbury group sandstone outcrops. The higher K, pediment sandstones are interpreted to have a similar provenance to some Bradbury group sandstones, further evidence for widespread, alkaline source rock within and/or in the vicinity of Gale crater. The Bradbury and Siccar Point groups may both be younger than the Mount Sharp group. Alternatively, an alkaline source area in and around Gale crater has been eroded by both water and wind at different times (both before and after deposition of the Mount Sharp group), during the evolution of the crater and its infill.
Bioactive trace metals and their isotopes as paleoproductivity proxies: An assessment...
Tristan J Horner
Susan Little

Tristan Horner

and 26 more

May 01, 2021
Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. How the biological pump operated in the past is therefore important for understanding past atmospheric carbon dioxide concentrations and Earth’s climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including: iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES-era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the elements that are least sensitive to productivity may be used to trace other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth’s climate history.
Droughts can reduce the nitrogen retention capacity of catchments
Carolin Winter
Tam Nguyen

Carolin Winter

and 6 more

June 01, 2022
In 2018–2019, Central Europe experienced an unprecedented multi-year drought with severe impacts on society and ecosystems. In this study, we analyzed the impact of this drought on water quality by comparing long-term (1997-2017) nitrate export with 2018–2019 export in a heterogeneous mesoscale catchment. We combined data-driven analysis with process-based modelling to analyze nitrogen retention and the underlying mechanisms in the soils and during subsurface transport. We found a drought-induced shift in concentration-discharge relationships, reflecting exceptionally low riverine nitrate concentrations during dry periods and exceptionally high concentrations during subsequent wet periods. Nitrate loads were up to 70% higher compared to the long-term load-discharge relationship. Model simulations confirmed that this increase was driven by decreased denitrification and plant uptake and subsequent flushing of accumulated nitrogen during rewetting. Fast transit times (<2 months) during wet periods in the upstream sub-catchments enabled a fast water quality response to drought. In contrast, longer transit times downstream (>20 years) inhibited a fast response but potentially contribute to a long-term drought legacy. Overall, our study reveals that severe multi-year droughts, which are predicted to become more frequent across Europe, can reduce the nitrogen retention capacity of catchments, thereby intensifying nitrate pollution and threatening water quality.
Past climate variations recorded in needle-like aragonites correlate with organic car...
Ivan Razum
Petra Bajo

Ivan Razum

and 7 more

November 26, 2020
The drivers of the efficiency in organic carbon (OC) burial are still poorly understood despite their key role in reliable projections of future climate trends. Here we shed new light on this question by presenting paleoclimate time series including OC content in sediments from Lake Veliko jezero, Croatia. The Sr/Ca ratios of the bulk sediment mainly derives from Sr and Ca concentrations of needle like aragonite in Core M1-A and was used as a palaeotemperature and palaeohydrology indicator. Four major and six minor cold and dry events were detected in the 8.3 to 2.6 cal ka BP interval. The combined assessment of Sr/Ca ratios, OC content, C/N ratios, δ13C data, and modelled proxies for palaeoredox conditions and aeolian input reveals that cold and dry climate state promoted anoxic conditions in the lake enhancing preservation of organic matter and leading to increased OC burial efficiency. Our study contributes to that projected future increase of temperature might play an important role in OC burial efficiency of meromictic lakes.
Venus' Mass Spectra Show Signs of Disequilibria in the Middle Clouds
Rakesh Mogul
Sanjay S. Limaye

Rakesh Mogul

and 3 more

February 06, 2021
We present a re-examination of mass spectral data obtained from the Pioneer Venus Large Probe Neutral Mass Spectrometer. Our interpretations of differing trace chemical species are suggestive of redox disequilibria in Venus’ middle clouds. Assignments to the data (at 51.3 km) include phosphine, hydrogen sulfide, nitrous acid, nitric acid, carbon monoxide, hydrochloric acid, hydrogen cyanide, ethane, and potentially ammonia, chlorous acid, and several tentative PxOy species. All parent ions were predicated upon assignment of corresponding fragmentation products, isotopologues, and atomic species. The data reveal parent ions at varying oxidation states, implying the presence of reducing power in the clouds, and illuminating the potential for chemistries yet to be discovered. When considering the hypothetical habitability of Venus’ clouds, the assignments reveal a potential signature of anaerobic phosphorus metabolism (phosphine), an electron donor for anoxygenic photosynthesis (nitrite), and major constituents of the nitrogen cycle (nitrate, nitrite, ammonia, and N2).
← Previous 1 2 3 4 5 6 7 8 9 … 33 34 Next →
Back to search
Authorea
  • Home
  • About
  • Product
  • Preprints
  • Pricing
  • Blog
  • Twitter
  • Help
  • Terms of Use
  • Privacy Policy