AUTHOREA
Log in Sign Up Browse Preprints
LOG IN SIGN UP

1116 environmental sciences Preprints

Related keywords
environmental sciences regional climatology transpiration soil sciences atmospheric chemistry and food sciences surface waters seismology and seismic exploration trace elements distribution soil biochemistry Applied computing soil physics hydrology stable isotopes public health heat flow marine geology (oceanography) petroleum geology freshwater ecology education shore and near-shore processes snow climatology (global change) solid-earth and geophysics geophysics + show more keywords
climate change impacts and adaptation paleoclimatology human society and farm management quality of water geochemistry paleontology fungi physical oceanography invertebrate paleontology ecology microbiology agricultural limnology agriculture ocean-bottom processes pollution and contamination solar system physics meteorology geology biological sciences land health sciences information and computing sciences air pollution other agricultural other environmental sciences environmental biogeochemistry atmospheric sciences data management and data science veterinary numerical modelling evaporation groundwater precipitation oceanography air-sea interaction sedimentology geomorphology
FOLLOW
  • Email alerts
  • RSS feed
Please note: These are preprints and have not been peer reviewed. Data may be preliminary.
Evaluation on the Steady-state Assumption of the Global Vegetation Carbon from Multi-...
Naixin Fan
Nuno Carvalhais

Naixin Fan

and 5 more

November 27, 2022
Vegetation turnover time (τ) is a central ecosystem property to quantify the global vegetation carbon dynamics. However, our understanding of vegetation dynamics is hampered by the lack of long-term observations of the changes in vegetation biomass. Here we challenge the steady state assumption of τ by using annual changes in vegetation biomass that derived from remote-sensing observations. We evaluate the changes in magnitude, spatial patterns, and uncertainties in vegetation carbon turnover times from 1992 to 2016. We found that the forest ecosystem is close to a steady state at global scale, contrasting with the larger differences between τ under steady state and τ under non-steady state at the grid cell level. The observation that terrestrial ecosystems are not in a steady state locally is deemed crucial when studying vegetation dynamics and the potential response of biomass to disturbance and climatic changes.
Acoustic emissions of nearly steady and uniform granular flows: a proxy for flow dyna...
Vincent Bachelet
Anne Mangeney

Vincent Bachelet

and 6 more

November 22, 2022
The seismic waves emitted during granular flows are generated by different sources: high frequencies by inter-particle collisions and low frequencies by global motion and large scale deformation. To unravel these different mechanisms, an experimental study has been performed on the seismic waves emitted by dry, dense, quasi-steady granular flows. The emitted seismic waves were recorded using shock accelerometers and the flow dynamics were captured with a fast camera. The mechanical characteristics of the particle collisions were analyzed, along with the intervals between collisions and the correlations in particles’ motion. The high-frequency seismic waves (1-50 kHz) were found to originate from particle collisions and waves trapped in the flowing layer. The low-frequency waves (20-60 Hz) were generated by particles’ oscillations along their trajectories, i.e. from cycles of dilation/compression during coherent shear. The profiles of granular temperature (i.e. the mean squared value of particle velocity fluctuations) and average velocity were measured and related to each other, then used in a simple steady granular flow model, in which the seismic signal consists of the variously attenuated contributions of shear-induced Hertzian collisions throughout the flow, to predict the rate at which seismic energy was emitted. Agreement with the measured seismic power was reasonable, and scaling laws relating the seismic power, the shear strain rate and the inertial number were derived. In particular, the emitted seismic power was observed to be approximately proportional to the root mean square velocity fluctuation to the power $3.1 \pm 0.9$, with the latter related to the mean flow velocity.
Pre-industrial, present and future atmospheric soluble iron deposition and the role o...
Elisa Bergas-Massó
Maria Gonçalves-Ageitos

Elisa Bergas-Massó

and 7 more

November 22, 2022
Changes in atmospheric iron (Fe) deposition to the open ocean affect net primary productivity, nitrogen fixation, and carbon uptake rates. We investigate the changes in soluble Fe (SFe) deposition from the pre-industrial period to the late 21st century using the EC-Earth3-Iron Earth System model, which stands out for its comprehensive representation of the atmospheric oxalate, sulfate, and Fe cycles. We show how anthropogenic activity has modified the magnitude and spatial distribution of SFe deposition by increasing combustion Fe emissions along with atmospheric acidity and oxalate levels. We find that SFe deposition has doubled since the early Industrial Era using the Coupled Model Intercomparison Project Phase 6 (CMIP6) emission inventory, with acidity being the main solubilization pathway for dust Fe, and ligand-promoted (oxalate) processing dominating the solubilization of combustion Fe. We project a global SFe deposition increase of 40% by the late 21st century relative to present day under Shared Socioeconomic Pathway (SSP) 3-7.0, which assumes weak climate change mitigation policies. In contrast, sustainable and business-as-usual SSPs (1-2.6 and 2-4.5) result in 35% and 10% global decreases, respectively. Despite these differences, SFe deposition consistently increases and decreases across SSPs over the (high nutrient low chlorophyl) equatorial Pacific and Southern Ocean (SO), respectively. Future changes in dust and wildfires with climate remains a key challenge for constraining SFe projections. We show that the equatorial Pacific and the SO would be sensitive not only to changes in Australian or South American dust emissions, but also to those in North Africa.
Synergistic Degradation of Dyes with Marine Bacteria Incubated in Graphene Oxide Matr...
Neha Redkar
MADHURIMA DEB

Neha Redkar

and 5 more

November 21, 2022
Graphene or graphene-based nanomaterials have emerged as novel scaffolds for developing robust bio-catalytic systems and a fast-developing promising contender for bioremediation. The interaction of bacteria and graphene is such an elusive issue that its implication in environmental biotechnology is unclear. The complexity and recalcitrant nature of the dyes make the conventional techniques inadequate and remain a challenge for industrial effluent treatment. Many scientists have developed hybrid processes and hybrid materials to enhance the treatment processes to satisfy increasingly stringent laws and criteria related to effluent discharge. The current study explicitly focuses on immobilization and growth of dye-degrading marine bacterial isolates on graphene oxide and their application in methylene blue dye degradation. The synergistic effects of adsorption and biodegradation achieved a unique clean-up performance that the counterpart-free bacteria could not fulfill. Further, toxicity analysis of intermediates also confirmed the non-toxic nature of the intermediates formed after synergistic treatment. This work has the potential to lead to zero effluent treatment processes.
Carbon cycle responses to changes in weathering and the long-term fate of stable carb...
Aurich Jeltsch-Thömmes
Fortunat Joos

Aurich Jeltsch-Thömmes

and 1 more

November 21, 2022
The causes of the variations in CO2 of the past million years remain poorly understood. Imbalances between the input of elements from rock weathering and their removal from the atmosphere-ocean-biosphere system to the lithosphere likely contributed to reconstructed changes. We employ the Bern3D Earth system model of intermediate complexity to investigate carbon-climate responses to step-changes in the weathering input of phosphorus, alkalinity, carbon, and carbon isotope ratio (δ13C) in simulations extending up to 600,000 years. CO2 and climate approach a new equilibrium within a few ten thousand years, whereas the equilibration lasts several hundred thousand years for δ13C. These timescales represent a challenge for the initialization of sediment-enabled models and unintended drifts may be larger than forced signals in simulations of the last glacial-interglacial cycle. Changes in dissolved CO2 change isotopic fractionation during marine photosynthesis and δ13C of organic matter. This mechanism and changes in the organic matter export cause distinct spatio-temporal perturbations in δ13C of dissolved inorganic carbon. A cost-efficient emulator is built with the Bern3D responses and applied in contrasting literature-based weathering histories for the past 800,000 years. Differences between scenarios for carbonate rock weathering reach around a third of the glacial-interglacial CO2 amplitude, 0.05 ‰ for δ13C, and exceed reconstructed variations in marine carbonate ion. Plausible input from the decomposition of organic matter on shelves causes variations of up to 10 ppm in CO2 , 4 mmol m−3 in CO2−3, and 0.09‰ in δ13C. Our results demonstrate that weathering-burial imbalances are important for past climate variations.
Analysis of Organic Matter Decomposition in the Salt Marshes of the Venice Lagoon (It...
Alice Puppin
Marcella Roner

Alice Puppin

and 6 more

November 19, 2022
Tidal salt marshes are widespread along the World’s coasts, and are ecologically and economically important as they provide several valuable ecosystem services. In particular, their significant primary production, coupled with sustained vertical accretion rates, enables marshes to sequester and store large amounts of organic carbon and makes them one of the most carbon-rich ecosystems on Earth. Organic carbon accumulation results from the balance between inputs, i.e. organic matter produced by local plants or imported, and outputs through decomposition and erosion. Additionally, organic matter deposition actively contributes to marsh vertical accretion, thus critically affecting the resilience of marsh ecosystems to rising relative sea levels. A better understanding of organic-matter dynamics in salt marshes is key to address salt-marsh conservation issues and to elucidate marsh importance within the global carbon cycle. Toward this goal, we empirically derived rates of organic matter decomposition by burying 712 commercially available tea bags at different marshes in the microtidal Venice Lagoon (Italy), and by analyzing them following the Tea Bag Index protocol. We find values of the decomposition rate (k) and stabilization factor (S) equal to 0.012±0.003 day-1 and 0.15±0.063, respectively. Water temperature critically affects organic matter decomposition, enhancing decomposition rates by 8% per °C on average. We argue that, at least in the short term, the amount of undecomposed organic matter that actively contributes to carbon sequestration and marsh vertical accretion strongly depends on the initial organic matter quality, which is a function of marsh and vegetation characteristics.
Comparison of Open-Source Three-Dimensional Reconstruction Pipelines for Maize-Root P...
Suxing Liu
Wesley Bonelli

Suxing Liu

and 3 more

November 18, 2022
Understanding three-dimensional (3D) root traits is essential to improve water uptake, increase nitrogen capture, and raise carbon sequestration from the atmosphere. However, quantifying 3D root traits by reconstructing 3D root models for deeper field-grown roots remains a challenge due to the unknown tradeoff between 3D root-model quality and 3D root-trait accuracy. Therefore, we performed two computational experiments. We first compared the 3D model quality generated by five state-of-the-art open-source 3D model reconstruction pipelines on 12 contrasting genotypes of field-grown maize roots. These pipelines included COLMAP, COLMAP+PMVS (Patch-based Multi-view Stereo), VisualSFM, Meshroom, and OpenMVG+MVE (Multi-View Environment). The COLMAP pipeline achieved the best performance regarding 3D model quality versus computational time and image number needed. Thus, in the second test, we compared the accuracy of 3D root-trait measurement generated by the Digital Imaging of Root Traits 3D pipeline (DIRT/3D) using COLMAP-based 3D reconstruction with our current DIRT/3D pipeline that uses a VisualSFM-based 3D reconstruction (Liu et al., 2021) on the same dataset of 12 genotypes, with 5~10 replicates per genotype. The results revealed that, 1) the average number of images needed to build a denser 3D model was reduced from 3000~3600 (DIRT/3D [VisualSFM-based 3D reconstruction]) to 300~600 (DIRT/3D [COLMAP-based 3D reconstruction]); 2) denser 3D models helped improve the accuracy of the 3D root-trait measurement; 3) reducing the number of images can help resolve data storage capacity problems. The updated DIRT/3D (COLMAP-based 3D reconstruction) pipeline enables quicker image collection without compromising the accuracy of 3D root-trait measurements.
The influence of sediment thermal maturity and hydrocarbon formation on Hg behaviour...
Asri Oktavioni Indraswari
Joost Frieling

Asri Oktavioni Indraswari

and 5 more

November 19, 2022
While Hg in sediments is increasingly used as a proxy for deep-time volcanic activity, the behaviour of Hg in OM-rich sediments as they undergo thermal maturation is not well understood. In this study, we evaluate the effects of thermal maturation on sedimentary Hg contents and, thereby, the impact of thermal maturity on the use of the Hg/TOC proxy for large igneous province (LIP) volcanism. We investigate three cores (marine organic matter) with different levels of thermal maturity in lowermost Toarcian sediments (Posidonienschiefer) from the Lower Saxony Basin in Germany. We present Hg content, bulk organic geochemistry, and total sulfur in three cores with different levels of thermal maturity. The comparison of Hg data between the three cores indicates that Hg content in the mature/overmature sediments have increased > 2-fold compared to Hg in the immature deposits. Although difficult to confirm with the present data, we speculate that redistribution within the sedimentary sequence caused by the mobility and volatility of the element under relatively high temperatures may have contributed to Hg enrichment in distinct stratigraphic levels of the mature cores. Regardless of the exact mechanism, elevated Hg content together with organic-carbon loss by thermal maturation exaggerate the value of Hg/TOC in mature sediments, suggesting that thermal effects have to be considered when using TOC-normalised Hg as a proxy for far-field volcanic activity.
Study of the Water Quality of Natural Water Sources in the Alkalaa Municipal Communit...
Milad Khatib
Joseph Hleihel

Milad Khatib

and 4 more

November 18, 2022
Around the world, water is considered a fundamental factor, and plays a role in public health and economic growth. Both the water development rates and the proportion of the population are directly related to water needs. Water quality regarding physiochemistry and microbiology is important in dietary needs. Drinking water is considered one of the most important food products. Therefore, the water should meet the recommended quality standards. So, it should be free of bacteria, parasites, all kinds of microorganisms, and chemical substances which are dangerous to human health. This research focused on five cities of the Alkalaa Municipal Community, which forms 43% of the inhabitants of this community, in the Bint Jbeil district south of Lebanon. The goal of this study is to determine the fundamental physicochemical and microbiological water properties of eight distinct sites, as well as the amount of pollution. These tests were carried out in accordance with World Health Organization criteria (WHO). The collected data were utilized to assess the level of pollution in the examined zone.
Physicochemical and microbiological characteristics of Ras El-Ain basin, Tyr, Lebanon
Milad Khatib
Mohamad Daoud

Milad Khatib

and 3 more

November 17, 2022
Lebanon’s natural water resources are facing serious problems and approaches exhaustion. One of these issues is deteriorating performance, which is linked to unregulated resource planning and rising demand. There are many different types of consumption, such as residential, industrial, and irrigation. Surface and groundwater are both referred to designate water resources. However, due to the obvious accessibility of exploitation, surface water resources such as rivers, lakes, and basins are primarily used. The Ras El-Ain basin is 6 km far south of Tyr, Lebanon. The Lebanese state dedicated it, along with other reservoirs, to supply potable water for Tyr and the surrounding villages. Today, these basins’ water quality has deteriorated significantly because of unrestricted liquid and soil waste dumping. As a result, contaminants develop in the basin water. Aside from laboratory testing for water quality, contamination can be seen through direct observations, odors, watercolors, and patterns. The purpose of this study is to assess the level of pollution in the Ras El-Ain basin. This basin has been progressively subjected to a variety of quality degradation characteristics. This includes the most important physiochemical properties. As a result, the physicochemical and microbiological water characteristics of five selected samples from each basin were tested. These tests were performed in accordance with European Standard Methods and World Health Organization guidelines (WHO). The effect of pollutant disposal in the Ras El-Ain basin was studied using multivariate approaches. The obtained results were used to evaluate the pollution degree in various regions of the basin.
Essence of Water
Sushel Unninayar

Sushel Unninayar

December 03, 2022
Poem to imagine the “essence” of water as it circulates through the Earth universe, synergistically supporting all environments and living ecosystems, forming, and shaping land and life. The poem links key elements of the interactive global water cycle and international programs to sustainably manage natural, and socioeconomic resources, given the challenge of climate change. It is in awareness of: –Essential Water Variables (EWVs) of the Group on Earth Observations (GEO) Global Water Sustainability (GEOGLOWS) initiative; Earth Observations (EO) for the Water-Energy-Food Nexus (EO4WEF) community activity; UN Sustainable Development Goals (UN SDGs), UNFCCC–Climate Change. The poem hopes to bring water to the forefront of consciousness. Readers are invited to comment on the intangible “feelings” evoked by the poem.
High resolution seafloor thermometry and internal wave monitoring using Distributed A...
Julián Peláez Quiñones
Anthony Sladen

Julián Peláez Quiñones

and 9 more

November 16, 2022
Temperature is central for ocean science but is still poorly sampled on the deep ocean. Here, we show that Distributed Acoustic Sensing (DAS) technology can convert several kilometer long seafloor fiber-optic (FO) telecommunication cables into dense arrays of temperature anomaly sensors with milikelvin (mK) sensitivity, allowing us to monitor oceanic processes such as internal waves and upwelling with unprecedented detail. We validate our observations with oceanographic in-situ sensors and an alternative FO technology. Practical solutions and recent advances are outlined to obtain continuous absolute temperatures with DAS at the seafloor. Our observations grant key advantages to DAS over established temperature sensors, showing its transformative potential for thermometry in ocean sciences and hydrography.
XIS-PM2.5: A daily spatiotemporal machine-learning model for PM2.5 in the contiguous...
Allan Just
Kodi Arfer

Allan C. Just

and 4 more

November 16, 2022
Air-pollution monitoring is sparse across most of the United States, so geostatistical models are important for reconstructing concentrations of fine particulate air pollution (PM2.5) for use in health studies. We present XGBoost-IDW Synthesis (XIS), a daily high-resolution PM2.5 machine-learning model covering the contiguous US from 2003 through 2021. XIS uses aerosol optical depth from satellites and a parsimonious set of additional predictors to make predictions at arbitrary points, capturing near-roadway gradients and allowing the estimation of address-level exposures. We built XIS with a computationally tractable workflow for extensibility to future years, and we used weighted evaluation to fairly assess performance in sparsely monitored regions. Averaging across all years in site-level cross-validation, the weighted mean absolute error of predictions (MAE) was 2.13 μg/m3, a substantial improvement over the mean absolute deviation from the median, which was 4.23 μg/m3. Comparing XIS to a leading product from the US Environmental Protection Agency, the Fused Air Quality Surface Using Downscaling (FAQSD), we obtained a 22% reduction in MAE. We also found a stronger relationship between PM2.5 and social vulnerability with XIS than with the FAQSD. Thus, XIS has potential for reconstructing environmental exposures, and its predictions have applications in environmental justice and human health.
Evaluating the water cycle over CONUS at the watershed scale for the Energy Exascale...
Bryce E Harrop
Karthik Balaguru

Bryce E Harrop

and 12 more

November 15, 2022
The water cycle is an important component of the earth system and it plays a key role in many facets of society, including energy production, agriculture, and human health and safety. In this study, the Energy Exascale Earth System Model version 1 (E3SMv1) is run with low-resolution (roughly 110 km) and high-resolution (roughly 25 km) configurations — as established by the High Resolution Model Intercomparison Project protocol — to evaluate the atmospheric and terrestrial water budgets over the conterminous United States (CONUS) at the large watershed scale. The water cycle slows down in the HR experiment relative to the LR, with decreasing fluxes of precipitation, evapotranspiration, atmospheric moisture convergence, and runoff. The reductions in these terms exacerbate biases for some watersheds, while reducing them in others. For example, precipitation biases are exacerbated at HR over the Eastern and Central CONUS watersheds, while precipitation biases are reduced at HR over the Western CONUS watersheds. The most pronounced changes to the water cycle come from reductions in precipitation and evapotranspiration, the latter of which results from decreases in evaporative fraction. While the HR simulation is warmer than the LR, moisture convergence decreases despite the increased atmospheric water vapor, suggesting circulation biases are an important factor. Additional exploratory metrics show improvements to water cycle extremes (both in precipitation and streamflow), fractional contributions of different storm types to total precipitation, and mountain snowpack.
Fire-Pollutant-Atmosphere Components and Its Impact on Mortality in Portugal During W...
Ediclê de Souza Fernandes Duarte
Maria Joao Costa

Ediclê de Souza Fernandes Duarte

and 6 more

November 16, 2022
Wildfires expose populations to increased morbidity and mortality due to increased air pollutant concentrations. Data included burned area, particulate matter (PM10, PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), temperature, relative humidity, wind-speed, aerosol optical depth (AOD) and mortality rates due to Circulatory System Disease (CSD), Respiratory System Disease (RSD), Pneumonia (PNEU), Chronic Obstructive Pulmonary Disease (COPD), and Asthma (ASMA). Only the months of the 2011-2020 wildfire season (June-July-August-September-October) with burned area greater than 1000 ha were considered. Multivariate statistical methods were used to reduce the dimensionality of the data to create two fire-pollution-meteorology indices (PBI, API), which allow us to understand how the combination of these variables affect cardio-respiratory mortality. Cluster analysis applied to PBI-API-Mortality divided the data into two Clusters. Cluster 1 included the months with lower temperatures, higher relative humidity, and high PM10, PM2.5, and NO2 concentrations. Cluster 2 included the months with more extreme weather conditions such as higher temperatures, lower relative humidity, larger forest fires, high PM10, PM2.5, O3, and CO concentrations, and high AOD. The two clusters were subjected to linear regression analysis to better understand the relationship between mortality and the PBI and API indices. The results showed statistically significant (p-value < 0.05) correlation (r) in Cluster 1 between RSDxPBI (rRSD = 0.539), PNEUxPBI (rPNEU = 0.644). Cluster 2 showed statistically significant correlations between RSDxPBI (rRSD = 0.464), PNEUxPBI (rPNEU = 0.442), COPDxPBI (rCOPD = 0.456), CSDxAPI (rCSD = 0.705), RSDxAPI (rCSD = 0.716), PNEUxAPI (rPNEU = 0.493), COPDxAPI (rPNEU = 0.619).
Climatic controls on individual ostracode stable isotopes in a desert lake: a modern...
Kaustubh Thirumalai
Andrew S Cohen

Kaustubh Thirumalai

and 2 more

November 18, 2022
Stable carbon (δ¹³C) and oxygen (δ¹⁸O) isotope measurements in lacustrine ostracodes are widely used to infer past climatic conditions. Previous work has used individual ostracode valves to resolve seasonal and subdecadal climate signals, yet environmental controls on geochemical variability within co-occurring specimens from modern samples are poorly constrained. Here we focus on individual ostracode valves in modern-aged Lake Turkana sediments, an alkaline desert lake in tropical East Africa. We present individual ostracode valve analyses (IOVA) of δ¹³C and δ¹⁸O measurements (n = 329) of extant species Sclerocypris clavularis from 17 sites spanning the entire lake (n-avg ~19 specimens per site). We demonstrate that the pooled statistics of individual valve measurements at each site overcome inter-specimen isotopic variance and are driven by hydrological variability in the lake. Mean IOVA-δ¹³C and -δ¹⁸O across the sites exhibit strong spatial trends with higher values at more southerly latitudes, modulated by distance from the inflow of the Omo River. Whereas the latitudinal δ¹³C gradient reflects low riverine δ¹³C and decreasing lacustrine productivity towards the southern part of the lake, the δ¹⁸O gradient is controlled by evaporation superimposed on the waning influence of low-δ¹⁸O Omo River waters, sourced from the Ethiopian highlands. We show that ostracode δ¹⁸Oproximal to Omo River inflow is deposited under near-equilibrium conditions and that inter-specimen δ¹⁸O variability across the basin is consistent with observed temperature and lake water δ¹⁸O variability. IOVA can provide skillful constraints on high-frequency paleoenvironmental signals and, in Omo-Turkana sediments, yield quantitative insights into East African paleohydrology.
In-situ estimation of erosion model parameters using an advection-diffusion model and...
William Connellan Edge
matt.rayson

William Connellan Edge

and 3 more

November 14, 2022
We describe a framework for the simultaneous estimation of model parameters in a partial differential equation using sparse observations. Monte Carlo Markov Chain (MCMC) sampling is used in a Bayesian framework to estimate posterior probability distributions for each parameter. We describe the necessary components of this approach and its broad potential for application in models of unsteady processes. The framework is applied to three case studies, of increasing complexity, from the field of cohesive sediment transport. We demonstrate that the framework can be used to recover posterior distributions for all parameters of interest and the results agree well with independent estimates (where available). We also demonstrate how the framework can be used to compare different model parameterizations and provide information on the covariance between model parameters.
A thermodynamic nonequilibrium model for preferential infiltration and refreezing of...
Adrian Moure
Nathan David Jones

Adrian Moure

and 4 more

November 14, 2022
The transport of meltwater through porous snow is a fundamental process in hydrology that remains poorly understood but essential for more robust prediction of how the cryosphere will respond under climate change. Here we propose a continuum model that resolves the nonlinear coupling of preferential melt flow and the nonequilibrium thermodynamics of ice-melt phase change at the Darcy scale. We assume that the commonly observed unstable melt infiltration is due to the gravity fingering instabililty, and capture it using the modified Richards equation that is extended with a higher-order term in saturation. Our model accounts for changes in porosity and the thermal budget of the snowpack caused by melt refreezing at the continuum scale, based on a mechanistic estimate of the ice-water phase change kinetics formulated at the pore scale. We validate the model in 1D against field data and laboratory experiments of infiltration in snow and find generally good agreement. Compared to existing theory of stable melt infiltration, our 2D simulation results show that preferential infiltration delivers melt faster to deeper depths, and as a result, changes in porosity and temperature can occur at deeper parts of the snow. The simulations also capture the formation of vertical low porosity annulus known as ice pipes, which have been observed in the field but lack mechanistic understanding to date. Our results demonstrate how melt refreezing and unstable infiltration reshape the porosity structure of snow and impacts thermal and mass transport in highly nonlinear ways, which are not captured by simpler models.
Integrating Water Quality Data with a Bayesian Network Model to Improve Spatial and T...
Zihan Wei
Sarfaraz Alam

Zihan Wei

and 7 more

November 11, 2022
Surface water nutrient pollution, the primary cause of eutrophication, remains a major environmental concern in Western Lake Erie despite intergovernmental efforts to regulate nutrient sources. The Maumee River Basin has been the largest nutrient contributor. The two primary nutrients sources are inorganic fertilizer and livestock manure applied to croplands, which are later carried to the streams via runoff and soil erosion. Prior studies on nutrient source attribution have focused on large watersheds or counties at long time scales. Source attribution at finer spatiotemporal scales, which enables more effective nutrient management, remains a substantial challenge. This study aims to address this challenge by developing a portable network model framework for phosphorus source attribution at the subwatershed (HUC-12) scale. Since phosphorus release is uncertain, we combine excess phosphorus derived from manure and fertilizer application and crop uptake data, flow dynamics simulated by the SWAT model, and in-stream water quality measurements into a probabilistic framework and apply Approximate Bayesian Computation to attribute phosphorus contributions from subwatersheds. Our results show significant variability in subwatershed-scale phosphorus release that is lost in coarse-scale attribution. Phosphorus contributions attributed to the subwatersheds are on average lower than the excess phosphorus estimated by the nutrient balance approach adopted by environmental agencies. Phosphorus release is higher during spring planting than the growing period, with manure contributing more than inorganic fertilizer. By enabling source attribution at high spatiotemporal resolution, our lightweight and portable model framework is suitable for broad applications in environmental regulation and enforcement for other regions and pollutants.
Assessment of NA-CORDEX regional climate models, reanalysis, and in-situ gridded-obse...
Souleymane SY
Fabio Madonna

Souleymane SY

and 4 more

November 10, 2022
Climate models still need to be improved in their capability of reproducing the present climate at both global and regional scale. The assessment of their performance depends on the datasets used as comparators. Reanalysis and gridded (homogenized or not homogenized) observational datasets have been frequently used for this purpose. However, none of these can be considered a reference dataset. Here, for the first time, using in-situ measurements from NOAA U.S. Climate Reference Network (USCRN), a network of 139 stations with high-quality instruments deployed across the continental U.S, daily temperature, and precipitation from a suite of dynamically downscaled regional climate models (RCMs; driven by ERA-Interim) involved in NA-CORDEX are assessed. The assessment is extended also to the most recent and modern widely used reanalysis (ERA5, ERA-Interim, MERRA2, NARR) and gridded observational datasets (Daymet, PRISM, Livneh, CPC). Results show that biases for the different datasets are mainly seasonal and subregional dependent. On average, reanalysis and in-situ-based datasets are generally warmer than USCRN year-round, while models are colder (warmer) in winter (summer). In-situ-based datasets provide the best performance in most of the CONUS regions compared to reanalysis and models, but still have biases in regions such as the Midwest mountains and the Northwestern Pacific. Results also highlight that reanalysis does not outperform RCMs in most of the U.S. subregions. Likewise, for both reanalysis and models, temperature and precipitation biases are also significantly depending on the orography, with larger temperature biases for coarser model resolutions and precipitation biases for reanalysis.
Linking drought indices in the Atlantic sector of the High Arctic (Svalbard) to atmos...
Krzysztof Migala
EwaLupikasza

Krzysztof Migala

and 4 more

November 08, 2022
Based on the long-term climatological data from Ny Alesund, Svalbard Airport – Longyearbyen and Hornsund Polish Polar Station, we undertook an analysis of drought indices on West Spitsbergen Island, Svalbard for the period 1979-2019. The features and causes of spatio-temporal variability of atmospheric drought on Svalbard were identified, as expressed by the Standardised Precipitation Evapotranspiration Index (SPEI). It was possible to indicate several-years long periods with the SPEI indicating a domination of drought or wet conditions. Long-term variability of annual and half-year (May-October) values of SPEI showed a prevalence of droughts in the 80-ties and in the first decade of the 21st century while wet seasons were frequent in the 90-ties and in the second decade of the 21st century. Seasonal SPEIs were characteristic of great inter-annual variability. In MAM and JJA droughts were more frequent after 2000; in the same period in SON and DJF, the frequency of wet seasons increased. The most remarkable changes in the scale of the entire research period were estimated for autumn where negative values of SPEI occur more often in the first part of the period and positive values dominate in the last 20 years. The long-term course of the variables in subsequent seasons between 1979-2019 indicates strong relationships between the SPEI drought index and anomalies of precipitable water and somewhat weaker relationships with anomalies of sea level pressure.
Applying triangular correlation of angular deviation for multi-block materials via GE...
Ahmet Ilker Topuz
Madis Kiisk

Ahmet Ilker Topuz

and 2 more

November 05, 2022
The possibility to exploit the muon scattering for the elemental discrimination of materials in a given volume is well known. When more than one material is present along the muon path, it is often important to discern the order in which they are stacked. The scattering angle due to the target volume can be split into two interior angles in the tomographic setups based on the muon scattering, and we call this property as the triangular correlation where the sum of these two interior angles is equal to the scattering angle. In this study, we apply this triangular correlation for a multi-block material configuration that consist of concrete, stainless steel, and uranium. By changing the order of this material set, we employ the GEANT4 simulations and we show that the triangular correlation is valid in the multi-block material setups, thereby providing the possibility of supportive information for the coarse prediction of the material order in such configurations.
Positive outcomes from U.S. lead regulations, continued challenges, and lessons learn...
Matthew Dietrich
Gabriel Filippelli

Matthew Dietrich

and 1 more

January 24, 2023
Albeit slow and not without its challenges, lead (Pb) emissions and sources in the United States (U.S.) have decreased immensely over the past several decades. Despite the prevalence of childhood Pb poisoning throughout the 20th century, most U.S. children born in the last two decades are significantly better off than their predecessors in regards to Pb exposure. However, this is not equal across demographic groups and challenges remain. Modern atmospheric emissions of Pb in the U.S. are nearly negligible since the banning of leaded gasoline in vehicles and regulatory controls on Pb smelting plants and refineries. This is evident in the rapid decrease of atmospheric Pb concentrations across the U.S over the last four decades. One of the most significant remaining contributors to air Pb is aviation gasoline (avgas), which is minor compared to former Pb emissions. However, continual exposure risks to Pb exist in older homes and urban centers, where leaded paint and/or historically contaminated soils+dusts can still harm children. Thus, while effective in eliminating nearly all primary sources of Pb in the environment, the slow rate of U.S. Pb regulation has led to legacy, secondary sources of Pb in the environment. More proactive planning, communication, and research of commonly used emerging contaminants of concern that can persist in the environment long after their initial use (i.e., PFAS) should be prioritized so that the same mistakes are not made again.
Monod parameterization and competition at low iron among freshwater cyanobacteria and...
Purnank Shah
Shelley McCabe

Purnank Shah

and 4 more

November 04, 2022
1. This study combines two approaches to explore the utility of Monod growth kinetics to predict competition outcomes between freshwater cyanobacteria and chlorophytes at low iron Fe. Fe threshold concentrations (FeT) below which growth ceases, and growth affinities (slope of Fe concentration vs growth rate near FeT) were estimated for three large-bodied cyanobacteria (two N-fixers and Microcystis) and two chlorophytes in batch cultures. 2. Mean FeT for N-replete cyanobacteria, N-deplete (when N-fixing) cyanobacteria and chlorophytes were 0.076, 0.736 and 0.245 nmol L-1 , respectively. Mean affinities were 0.937, 0.597 and 0.412 L nmol-1 d-1 , respectively. Assuming that the mean affinities are representative of their groups, affinities predict that N-replete cyanobacteria are more efficient at acquiring Fe than chlorophytes and should dominate when Fe is low but greater than their FeT. 3. A second study evaluated the competitive abilities of a pico-cyanobacterium and a third chlorophyte in dual species, serial dilution culture. The pico-cyanobacterium was dominant at 50 nmol L-1 total Fe (which limited both taxa) and 500 nmol L-1 total Fe. At 0.5 nmol L-1 total Fe, a stressful concentration below FeT during most of the incubation, growth rates and cell densities were extremely low but neither had washed out after several months. 4. These results show that Monod kinetics can successfully predict competition outcomes in laboratory settings at low Fe. While important, Monod kinetics are only one mechanism governing competition between cyanobacteria and eukaryotes in natural systems. Observed deviations from Monod predictions can be partially explained with known mechanisms.
← Previous 1 2 3 4 5 6 7 8 9 … 46 47 Next →
Back to search
Authorea
  • Home
  • About
  • Product
  • Preprints
  • Pricing
  • Blog
  • Twitter
  • Help
  • Terms of Use
  • Privacy Policy