AUTHOREA
Log in Sign Up Browse Preprints
LOG IN SIGN UP

1851 climatology (global change) Preprints

Related keywords
climatology (global change) sea-air interactions regional climatology surface waters atmospheric chemistry and food sciences trace elements distribution pollution and contamination sea ice meteorology hydrology geology applied climatology environmental sciences information and computing sciences geography hydrometeorology polar meteorology atmospheric sciences petroleum geology education climate change impacts and adaptation geophysics veterinary paleoclimatology + show more keywords
numerical modelling evaporation human society precipitation geochemistry oceanography biological oceanography air-sea interaction sedimentology physical climatology physical oceanography ecology agricultural
FOLLOW
  • Email alerts
  • RSS feed
Please note: These are preprints and have not been peer reviewed. Data may be preliminary.
Clouds and radiatively induced circulations (Invited Chapter for the AGU Geophysical...
Tra Dinh
Blaž Gasparini

Tra Dinh

and 2 more

October 19, 2022
In the atmosphere, there is an intimate relationship between clouds, atmospheric radiative cooling/heating, and radiatively induced circulations at various temporal and spatial scales. This coupling remains not well under- stood, which contributes to limiting our ability to model and predict clouds and climate accurately. Cloud liquid and ice particles interact with both shortwave (SW) and longwave (LW) radiation, leading to cloud radiative effect (CRE). The CRE includes perturbations of the radiative fluxes at the top of the atmosphere (TOA) and the surface, as well as perturbations of the radiative cooling pro- file within the atmosphere. The effect of clouds that results in atmospheric radiative heating or cooling that is distinct from the clear-sky radiative cooling profile will be termed the CRE on atmospheric heating, or CRE-AH. The CRE-AH can significantly modify the horizontal and vertical gradients of the diabatic heating profile, inducing circulations at various scales in the atmosphere. In turn, circulations govern cloud formation and evolution processes and therefore the properties and distribution of clouds.
An upper bound for extreme temperatures over midlatitude land
Yi Zhang
William Boos

Yi Zhang

and 1 more

March 25, 2022
Heatwaves damage societies globally and are intensifying with global warming. Several mechanistic drivers of heatwaves, such as atmospheric blocking and soil moisture-atmosphere feedback, are well-known for their ability to raise surface air temperature. However, what limits the maximum surface air temperature in heatwaves remains unknown; this became evident during recent Northern Hemisphere heatwaves which achieved temperatures far beyond the upper tail of the observed statistical distribution. Here, we present the hypothesis, with corroborating evidence, that convective instability limits annual maximum surface air temperatures (TXx) over midlatitude land. We provide a theory for the upper bound of midlatitude temperatures, which accurately describes the observed relationship between temperatures at the surface and in the mid-troposphere. Known heatwave drivers shift the position of the atmospheric state in the phase space described by the theory, changing its proximity to the upper bound.Our theory suggests that the upper bound for midlatitude TXx should increase 1.9 times as fast as 500-hPa temperatures. Using empirical 500-hPa warming, we project that the upper bound of TXx over Northern Hemisphere midlatitude land (40°N-65°N) will increase about twice as fast as global mean surface air temperature, and TXx will increase faster than this bound over regions that dry on the hottest days.
Machine Learning and Remote sensing method to Determine the Relationship Between Clim...
Adya Aiswarya Dash
Abhijit Mukherjee

Adya Aiswarya Dash

and 1 more

December 06, 2022
Through machine learning and remote sensing, a high-end model with a finer resolution for groundwater recharge has been developed for the region of South-East Asia. The groundwater recharge coefficient can be found by the application of Random Forest regression followed by the implication of the water budget method to calculate the Groundwater Recharge values. Climatic factors such as precipitation and actual evapotranspiration to map Groundwater Recharge has been framed with a sophisticated machine learning method to be considered as a scale predicting model. A comprehensive visualization of the dataset has been done; the accuracy of the model is noted through random forest regression. Thus, the model can be used for various regions of the dataset specifically for the area where there is a lack of reach for data. It can be successfully used to form a sophisticated end-to-end ML model. Keywords: Machine Learning, Remote Sensing, Groundwater Recharge, Climate science.
Machine Learning and Remote sensing method to Determine the Relationship Between Clim...
Adya Aiswarya Dash

Adya Aiswarya Dash

December 06, 2022
Machine Learning and Remote sensing method to determine the relationship between Climate and Groundwater Recharge. Adya Aiswarya Dash1, Abhijit Mukherjee1,2,3. 1Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, West Bengal 721302, India 2School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India 3Applied Policy Advisory for Hydrogeoscience (APAH) Group, Indian Institute of Technology Kharagpur, West Bengal 721302, India Abstract Through machine learning and remote sensing, a high-end model with a finer resolution for groundwater recharge has been developed for the region of South-East Asia. The groundwater recharge coefficient can be found by the application of Random Forest regression followed by the implication of the water budget method to calculate the Groundwater Recharge values. Climatic factors such as precipitation and actual evapotranspiration to map Groundwater Recharge has been framed with a sophisticated machine learning method to be considered as a scale predicting model. A comprehensive visualization of the dataset has been done; the accuracy of the model is noted through random forest regression. Thus, the model can be used for various regions of the dataset specifically for the area where there is a lack of reach for data. It can be successfully used to form a sophisticated end-to-end ML model. Keywords: Machine Learning, Remote Sensing, Groundwater Recharge, Climate science.
Climate Change, Conservation, and Sustainable Management Strategies in the Se Kong, S...
Ibrahim Mohammed
John Bolten

Ibrahim Mohammed

and 4 more

December 05, 2022
Sustainably managing resources in a transboundary freshwater basin is a complex problem, particularly when considering the compounding impacts of climate change, hydropower development, and evolving water governance paradigms. In this study, we used a mixed methods approach to analyze potential impacts of climate change on regional hydrology, the ability of dam operation rules to keep downstream flow within acceptable limits, and the present state of water governance in Laos, Vietnam, and Cambodia. Our results suggest that future river flows in the 3S river system could move closer to natural (i.e., pre-development) conditions during the dry season and experience increased floods during the wet season. This anticipated new flow regime in the 3S region would require a shift in the current dam operations, from maintaining minimum flows to reducing flood hazards. Moreover, our Governance and Stakeholders survey assessment results revealed that existing water governance systems in Laos, Vietnam, and Cambodia are ill-prepared to address such anticipated future water resource management problems. Our results indicate that the solution space for addressing these complex issues in the 3S river basins will be highly constrained unless major deficiencies in transboundary water governance, strategic planning, financial capacity, information sharing, and law enforcement are remedied in the next decade. This work is part of an ongoing research partnership between the National Aeronautical and Space Agency (NASA) and the Conservation International (CI) dedicated to improving natural resources assessment for conservation and sustainable management.
Exploring the Role of Essential Water Variables (EWVs) in Monitoring Indicators for t...
Sushel Unninayar
Richard Lawford

sushel unninayar

and 1 more

December 05, 2022
Earth Observations (EO) systems aim to monitor nearly all aspects of the global Earth environment. Observations of Essential Water Variables (EWVs) together with advanced data assimilation models, could provide the basis for systems that deliver integrated information for operational and policy level decision making that supports the Water-Energy-Food-Nexus (EO4WEF), and concurrently the UN Sustainable Development Goals (SDGs), and UN Framework Convention on Climate Change (UNFCCC). Implementing integrated EO for GEO-WEF (EO4WEF) systems requires resolving key questions regarding the selection and standardization of priority variables, the specification of technologically feasible observational requirements, and a template for integrated data sets. This paper presents a concise summary of EWVs adapted from the GEO Global Water Sustainability (GEOGLOWS) Initiative and consolidated EO observational requirements derived from the GEO Water Strategy Report (WSR). The UN-SDGs implicitly incorporate several other Frameworks and Conventions such as The Sendai Framework for Disaster Risk Reduction; The Ramsar Convention on Wetlands; and the Aichi Convention on Biological Diversity. Primary and Supplemental EWVs that support WEF Nexus & UN-SDGs, and Climate Change are specified. The EO-based decision-making sectors considered include water resources; water quality; water stress and water use efficiency; urban water management; disaster resilience; food security, sustainable agriculture; clean & renewable energy; climate change adaptation & mitigation; biodiversity & ecosystem sustainability; weather and climate extremes (e.g., floods, droughts, and heat waves); transboundary WEF policy.
Using A Phase Space of Environmental Variables to Drive an Ensemble of Cloud-resolvin...
Ehsan Erfani
Robert Wood

Ehsan Erfani

and 4 more

December 05, 2022
Low marine clouds are a major source of uncertainty in cloud feedbacks across climate models and in forcing by aerosol-cloud interactions. The evolution of these clouds and their response to aerosol are sensitive to the ambient environmental conditions, so it is important to be able to determine different responses over a representative set of conditions. Here, we propose a novel approach to encompassing the broad range of conditions present in low marine cloud regions, by building a library of observed environmental conditions. This approach can be used, for example, to more systematically test the fidelity of Large Eddy Simulations (LES) in representing these clouds. ERA5 reanalysis and various satellite observations are used to extract and derive macrophysical and microphysical cloud-controlling variables (CCVs) such as SST, estimated inversion strength (EIS), subsidence, and cloud droplet number concentrations. A few locations in the stratocumulus (Sc) deck region of the Northeast Pacific during summer are selected to fill out a phase space of CCVs. Thereafter, Principal Component Analysis (PCA) is applied to reduce the dimensionality and to select a reduced set of components that explain most of the variability among CCVs in order to efficiently select cases for LES simulations that encompass the observed CCV phase space. From this phase space, 75-100 cases with distinct environmental conditions will be selected and used to initialize 2-day LES modeling to provide a spectrum of aerosol-cloud interactions and Sc-to-Cumulus transition under observed ambient conditions. Such a large number of simulations will help create statistics to assess how well the LES can simulate the cloud lifecycle when constrained by the ‘best estimate’ of the environmental conditions, and how sensitive the modeled clouds are to changes in these driving fields.
Exploring the Role of Essential Water Variables (EWVs) in Monitoring Indicators for t...
Sushel Unninayar

sushel unninayar

December 03, 2022
Earth Observations (EO) systems aim to monitor nearly all aspects of the global Earth environment. Observations of Essential Water Variables (EWVs) together with advanced data assimilation models, could provide the basis for systems that deliver integrated information for operational and policy level decision making that supports the Water-Energy-Food-Nexus (EO4WEF), and concurrently the UN Sustainable Development Goals (SDGs), and UN Framework Convention on Climate Change (UNFCCC). Implementing integrated EO for GEO-WEF (EO4WEF) systems requires resolving key questions regarding the selection and standardization of priority variables, the specification of technologically feasible observational requirements, and a template for integrated data sets. This paper presents a concise summary of EWVs adapted from the GEO Global Water Sustainability (GEOGLOWS) Initiative and consolidated EO observational requirements derived from the GEO Water Strategy Report (WSR). The UN-SDGs implicitly incorporate several other Frameworks and Conventions such as The Sendai Framework for Disaster Risk Reduction; The Ramsar Convention on Wetlands; and the Aichi Convention on Biological Diversity. Primary and Supplemental EWVs that support WEF Nexus & UN-SDGs, and Climate Change are specified. The EO-based decision-making sectors considered include water resources; water quality; water stress and water use efficiency; urban water management; disaster resilience; food security, sustainable agriculture; clean & renewable energy; climate change adaptation & mitigation; biodiversity & ecosystem sustainability; weather and climate extremes (e.g., floods, droughts, and heat waves); transboundary WEF policy.
GC31B-06 Exploring the Role of Essential Water Variables (EWVs) in Monitoring Indicat...
Sushel Unninayar
Richard Lawford

Sushel Unninayar

and 1 more

December 03, 2022
Earth Observations (EO) systems aim to monitor nearly all aspects of the global Earth environment. Observations of Essential Water Variables (EWVs) together with advanced data assimilation models, could provide the basis for systems that deliver integrated information for operational and policy level decision making that supports the Water-Energy-Food-Nexus (EO4WEF), and concurrently the UN Sustainable Development Goals (SDGs), and UN Framework Convention on Climate Change (UNFCCC). Implementing integrated EO for GEO-WEF (EO4WEF) systems requires resolving key questions regarding the selection and standardization of priority variables, the specification of technologically feasible observational requirements, and a template for integrated data sets. This paper presents a concise summary of EWVs adapted from the GEO Global Water Sustainability (GEOGLOWS) Initiative and consolidated EO observational requirements derived from the GEO Water Strategy Report (WSR). The UN-SDGs implicitly incorporate several other Frameworks and Conventions such as The Sendai Framework for Disaster Risk Reduction; The Ramsar Convention on Wetlands; and the Aichi Convention on Biological Diversity. Primary and Supplemental EWVs that support WEF Nexus & UN-SDGs, and Climate Change are specified. The EO-based decision-making sectors considered include water resources; water quality; water stress and water use efficiency; urban water management; disaster resilience; food security, sustainable agriculture; clean & renewable energy; climate change adaptation & mitigation; biodiversity & ecosystem sustainability; weather and climate extremes (e.g., floods, droughts, and heat waves); transboundary WEF policy.
Fate and changes in moisture evaporated from the Tibetan Plateau (2000-2020)
Chi Zhang
Deliang Chen

Chi Zhang

and 3 more

December 02, 2022
Total evaporation from the vast terrain of the Tibetan Plateau (TP) may strongly influence downwind regions. However, the ultimate fate of this moisture remains unclear. This study tracked and quantified TP-originating moisture. The results show that the TP moisture participation in downwind regions’ precipitation is the strongest around the eastern edge of the TP and then weakens gradually toward the east. Consequently, TP moisture in the composition of precipitation over the central-eastern TP is the largest of over 30%. 44.9-46.7% of TP annual evaporation is recycled over the TP, and about 2/3 of the TP evaporation is reprecipitated over terrestrial China. Moisture cycling of TP origin shows strong seasonal variation, with seasonal patterns largely determined by precipitation, evaporation and wind fields. High levels of evaporation and precipitation over the TP in summer maximize local recycling intensity and recycling ratios. Annual precipitation of TP origin increased mainly around the northeastern TP during 2000-2020. This region consumed more than half of the increased TP evaporation. Further analyses showed that changes in reprecipitation of TP origin were consistent with precipitation trends in nearby downwind areas: when intensified TP evaporation meets intensified precipitation, more TP moisture is precipitated out. The model estimated an annual precipitation recycling ratio (PRR) of 26.9-30.8% in forward moisture tracking. However, due to the non-closure issue of the atmospheric moisture balance equation, the annual PRR in backward tracking can be ~6% lower.
Entropy Field Decomposition Analysis of Atmospheric River Formation
Lawrence Frank
Vitaly L Galinsky

Lawrence Robert Frank

and 3 more

December 01, 2022
A novel method for estimating spatial-temporal modes of time varying data containing complex non-linear interacting multivariate fields, called the entropy field decomposition (EFD), is applied to the problem of characterizing the formation and intensification of atmosphere rivers (ARs), and reveals two novel findings. First, analysis of global time-varying interacting wind (w) and specific humidity (q) fields produces spatiotemporal modes consistent with observed global distribution of ARs detected by Integrated Water Vapor Transport (IVT). Secondly, space-time information trajectories (STITs) generated from coupled w-q EFD modes, representing optimal (in the sense of maximum entropy) parameter pathways, reveal a clear connection between ARs and planetary-scale circulation with structure similar to Rossby waves and reveal that ARs appear to be dynamically linked with the outflow region of the wave troughs. These findings provide an automated quantitative method to examine impacts of interacting multiscale dynamics on AR formation and activities.
Uncertainty in projections of future lake thermal dynamics is differentially driven b...
Jacob H Wynne
Whitney M Woelmer

Jacob H Wynne

and 5 more

December 01, 2022
Freshwater ecosystems provide vital services, yet are facing increasing risks from global change. In particular, lake thermal dynamics have been altered around the world as a result of climate change, necessitating a predictive understanding of how climate will continue to alter lakes in the future as well as the associated uncertainty in these predictions. Numerous sources of uncertainty affect projections of future lake conditions but few are quantified, limiting the use of lake modeling projections as management tools. To quantify and evaluate the effects of two potentially important sources of uncertainty, lake model selection uncertainty and climate model selection uncertainty, we developed ensemble projections of lake thermal dynamics for a dimictic lake in New Hampshire, USA (Lake Sunapee). Our ensemble projections used four different climate models as inputs to five vertical one-dimensional (1-D) hydrodynamic lake models under three different climate change scenarios to simulate thermal metrics from 2006 to 2099. We found that almost all the lake thermal metrics modeled (surface water temperature, bottom water temperature, Schmidt stability, stratification duration, and ice cover, but not thermocline depth) are projected to change over the next century. Importantly, we found that the dominant source of uncertainty varied among the thermal metrics, as thermal metrics associated with the surface waters (surface water temperature, total ice duration) were driven primarily by climate model selection uncertainty, while metrics associated with deeper depths (bottom water temperature, stratification duration) were dominated by lake model selection uncertainty. Consequently, our results indicate that researchers generating projections of lake bottom water metrics should prioritize including multiple lake models for best capturing projection uncertainty, while those focusing on lake surface metrics should prioritize including multiple climate models. Overall, our ensemble modeling study reveals important information on how climate change will affect lake thermal properties, and also provides some of the first analyses on how climate model selection uncertainty and lake model selection uncertainty interact to affect projections of future lake dynamics.
The Usefulness of Streamflow Reconstructions: Understanding the Management Perspectiv...
Connie Woodhouse

Connie Woodhouse

November 28, 2022
The usefulness of extended records of streamflow from tree-ring based hydrologic reconstructions seems obvious- a longer record provides a broader range of the variability of extremes and allows recent and/or ongoing events to be evaluated in a long-term context. The information from these centuries-long records may have clear implications for water resource management, but it is often unclear exactly how this information can be applied to management. In this presentation, I will discuss some of the challenges I have observed that are involved in using streamflow reconstructions in management decisions. These range from issues related to an agency’s capacity to use new types of data to mismatches between what is needed (e.g., daily resolution, a network of gage inputs) and what reconstruction data provide. The skillfulness of a streamflow reconstruction also has a bearing on its perceived credibility in terms of useable data. In spite of these challenges, there is a variety of ways that these data have been used by water resource managers in the western US. The uses are often not immediately evident, but can take the form of, for example, sensitively assessment, awareness raising, and shifts in prior assumptions. Relationship building between researchers and resource managers can yield mutual respect and understanding that lead to both interesting research questions and relevant and valuable information, even if the application to management is not tangible or immediate.
Watermass co-ordinates isolate the historical ocean warming signal
Taimoor Sohail
Ryan Holmes

Taimoor Sohail

and 2 more

November 27, 2022
Persistent warming and water cycle change due to anthropogenic climate change modifies the temperature and salinity distribution of the ocean over time. This ‘forced’ signal of temperature and salinity change is often masked by the background internal variability of the climate system. Analysing temperature and salinity change in watermass-based coordinate systems has been proposed as an alternative to traditional Eulerian (e.g., fixed-depth, zonally-averaged) co-ordinate systems. The impact of internal variability is thought to be reduced in watermass co-ordinates, enabling a cleaner separation of the forced signal from background variability - or a higher ‘signal-to-noise’ ratio. Building on previous analyses comparing Eulerian and water-mass-based one-dimensional coordinates, here we recast two-dimensional co-ordinate systems - temperature-salinity (𝑇 − 𝑆), latitude-longitude and latitude-depth - onto a directly comparable equal-volume framework. We compare the internal variability, or ‘noise’ in temperature and salinity between these remapped two-dimensional co-ordinate systems in a 500 year pre-industrial control run from a CMIP6 climate model. We find that the median internal variability is lowest (and roughly equivalent) in 𝑇 − 𝑆 and latitude-depth space, compared with latitude-longitude co-ordinates. A large proportion of variability in 𝑇 − 𝑆 and latitude-depth space can be attributed to processes which operate over a timescale greater than 10 years. Overall, the signal-to-noise ratio in 𝑇 − 𝑆 co-ordinates is roughly comparable to latitude-depth co-ordinates, but is greater in regions of high historical temperature change. Conversely, latitude-depth co-ordinates have greater signal-to-noise ratio in regions of historical salinity change. Thus, we conclude that the climatic temperature change signal can be more robustly identified in watermass-co-ordinates.
Stratospheric climate anomalies and ozone loss caused by the Hunga Tonga volcanic eru...
Xinyue Wang
William J. Randel

Xinyue Wang

and 12 more

November 24, 2022
The Hunga Tonga-Hunga Ha’apai (HTHH) volcanic eruption in January 2022 injected extreme amounts of water vapor (H2O) and a moderate amount of the aerosol precursor (SO2) into the Southern Hemisphere (SH) stratosphere. The H2O and aerosol perturbations have persisted and resulted in large-scale SH stratospheric cooling, equatorward shift of the Antarctic polar vortex, and slowing of the Brewer-Dobson circulation associated with a substantial ozone reduction in the SH winter midlatitudes. Chemistry-climate model simulations forced by realistic HTHH inputs of H2O and SO2 reproduce the observed stratospheric cooling and circulation effects, demonstrating the observed behavior is due to the volcanic influences. Furthermore, the combination of aerosol transport to polar latitudes and a cold polar vortex enhances springtime Antarctic ozone loss, consistent with observed polar ozone behavior in 2022.
Melt Pond Fraction Derived from Sentinel-2 Data: Along the MOSAiC Drift and Arctic-wi...
Hannah Niehaus
Gunnar Spreen

Hannah Niehaus

and 12 more

November 23, 2022
Melt ponds forming on Arctic sea ice in summer significantly reduce the surface albedo and impact the heat and mass balance of the sea ice. Their seasonal development features fast and local changes in fractions of surface types demonstrating the necessity of improving melt pond fraction (MPF) products. We present a renewed method to extract MPF from Sentinel-2 satellite imagery, which is evaluated by MPF products from higher resolution satellite and helicopter-borne imagery. The analysis of melt pond evolution during the MOSAiC campaign in summer 2020, shows a split of the Central Observatory (CO) into a level ice and a highly deformed part, the latter of which exhibits exceptional early melt pond formation compared to the vicinity. Average CO MPFs amount to 17 % before and 23 % after the major drainage. Arctic-wide analysis of MPF for years 2017-2021 shows a consistent seasonal cycle in all regions and years.
Budyko framework based analysis of the effect of climate change on watershed characte...
Julie Collignan
Jan Polcher

Julie Collignan

and 3 more

November 23, 2022
In a context of climate change, the stakes surrounding water availability are getting higher. Decomposing and quantifying the effects of climate on discharge allows to better understand their impact on water resources. We propose a methodology to separate the effect of change in annual mean of climate variables from the effect of intra-annual distribution of precipitations. It combines the Budyko framework with outputs from a Land Surface Model (LSM). The LSM is used to reproduces the behavior of 2134 reconstructed watersheds over Europe between 1902 and 2010, with climate inputs as the only source of change. We fit to the LSM outputs a one parameter approximation to the Budyko framework. It accounts for the evolution of annual mean in precipitation (P) and potential evapotranspiration (PET). We introduce a time-varying parameter in the equation which represents the effect of long-term variations in the intra-annual distribution of P and PET. To better assess the effects of changes in annual means or in intra-annual distribution of P, we construct synthetic forcings fixing one or the other. The results over Europe show that the changes in discharge due to climate are dominated by the trends in the annual averages of P. The second main climate driver is PET, except over the Mediterranean area where changes in intra-annual variations of P have a higher impact on discharge than trends in PET. Therefore the effects of changes in intra-annual distribution of climate variables are not to be neglected when looking at changes in annual discharge.
Evaluation on the Steady-state Assumption of the Global Vegetation Carbon from Multi-...
Naixin Fan
Nuno Carvalhais

Naixin Fan

and 5 more

November 27, 2022
Vegetation turnover time (τ) is a central ecosystem property to quantify the global vegetation carbon dynamics. However, our understanding of vegetation dynamics is hampered by the lack of long-term observations of the changes in vegetation biomass. Here we challenge the steady state assumption of τ by using annual changes in vegetation biomass that derived from remote-sensing observations. We evaluate the changes in magnitude, spatial patterns, and uncertainties in vegetation carbon turnover times from 1992 to 2016. We found that the forest ecosystem is close to a steady state at global scale, contrasting with the larger differences between τ under steady state and τ under non-steady state at the grid cell level. The observation that terrestrial ecosystems are not in a steady state locally is deemed crucial when studying vegetation dynamics and the potential response of biomass to disturbance and climatic changes.
Pre-industrial, present and future atmospheric soluble iron deposition and the role o...
Elisa Bergas-Massó
Maria Gonçalves-Ageitos

Elisa Bergas-Massó

and 7 more

November 22, 2022
Changes in atmospheric iron (Fe) deposition to the open ocean affect net primary productivity, nitrogen fixation, and carbon uptake rates. We investigate the changes in soluble Fe (SFe) deposition from the pre-industrial period to the late 21st century using the EC-Earth3-Iron Earth System model, which stands out for its comprehensive representation of the atmospheric oxalate, sulfate, and Fe cycles. We show how anthropogenic activity has modified the magnitude and spatial distribution of SFe deposition by increasing combustion Fe emissions along with atmospheric acidity and oxalate levels. We find that SFe deposition has doubled since the early Industrial Era using the Coupled Model Intercomparison Project Phase 6 (CMIP6) emission inventory, with acidity being the main solubilization pathway for dust Fe, and ligand-promoted (oxalate) processing dominating the solubilization of combustion Fe. We project a global SFe deposition increase of 40% by the late 21st century relative to present day under Shared Socioeconomic Pathway (SSP) 3-7.0, which assumes weak climate change mitigation policies. In contrast, sustainable and business-as-usual SSPs (1-2.6 and 2-4.5) result in 35% and 10% global decreases, respectively. Despite these differences, SFe deposition consistently increases and decreases across SSPs over the (high nutrient low chlorophyl) equatorial Pacific and Southern Ocean (SO), respectively. Future changes in dust and wildfires with climate remains a key challenge for constraining SFe projections. We show that the equatorial Pacific and the SO would be sensitive not only to changes in Australian or South American dust emissions, but also to those in North Africa.
Carbon cycle responses to changes in weathering and the long-term fate of stable carb...
Aurich Jeltsch-Thömmes
Fortunat Joos

Aurich Jeltsch-Thömmes

and 1 more

November 21, 2022
The causes of the variations in CO2 of the past million years remain poorly understood. Imbalances between the input of elements from rock weathering and their removal from the atmosphere-ocean-biosphere system to the lithosphere likely contributed to reconstructed changes. We employ the Bern3D Earth system model of intermediate complexity to investigate carbon-climate responses to step-changes in the weathering input of phosphorus, alkalinity, carbon, and carbon isotope ratio (δ13C) in simulations extending up to 600,000 years. CO2 and climate approach a new equilibrium within a few ten thousand years, whereas the equilibration lasts several hundred thousand years for δ13C. These timescales represent a challenge for the initialization of sediment-enabled models and unintended drifts may be larger than forced signals in simulations of the last glacial-interglacial cycle. Changes in dissolved CO2 change isotopic fractionation during marine photosynthesis and δ13C of organic matter. This mechanism and changes in the organic matter export cause distinct spatio-temporal perturbations in δ13C of dissolved inorganic carbon. A cost-efficient emulator is built with the Bern3D responses and applied in contrasting literature-based weathering histories for the past 800,000 years. Differences between scenarios for carbonate rock weathering reach around a third of the glacial-interglacial CO2 amplitude, 0.05 ‰ for δ13C, and exceed reconstructed variations in marine carbonate ion. Plausible input from the decomposition of organic matter on shelves causes variations of up to 10 ppm in CO2 , 4 mmol m−3 in CO2−3, and 0.09‰ in δ13C. Our results demonstrate that weathering-burial imbalances are important for past climate variations.
Deterministic role of salinity advection feedback in the multi-centennial variability...
Ning Cao
Qiong Zhang

Ning Cao

and 5 more

November 19, 2022
Significant multi-centennial climate variability with a clear peak at approximately 200 years is found in a pre-industrial control simulation conducted with the EC-Earth3 climate model. The oscillation mainly emerges from the North Atlantic and appears to be closely associated with the Atlantic Meridional Overturning Circulation (AMOC). By examining the salinity advection feedback, we find that the perturbation flow of mean subtropical-subpolar salinity gradients in the subpolar area governs as positive feedback to the AMOC anomaly. Meanwhile, the mean advection of salinity anomalies and the vertical mixing or convection acts as negative feedback to restrain the AMOC anomaly. In a warmer climate, although the AMOC becomes weaker, such low-frequency variability still exists, indicating the robustness of the salinity advection feedback mechanism.
The influence of sediment thermal maturity and hydrocarbon formation on Hg behaviour...
Asri Oktavioni Indraswari
Joost Frieling

Asri Oktavioni Indraswari

and 5 more

November 19, 2022
While Hg in sediments is increasingly used as a proxy for deep-time volcanic activity, the behaviour of Hg in OM-rich sediments as they undergo thermal maturation is not well understood. In this study, we evaluate the effects of thermal maturation on sedimentary Hg contents and, thereby, the impact of thermal maturity on the use of the Hg/TOC proxy for large igneous province (LIP) volcanism. We investigate three cores (marine organic matter) with different levels of thermal maturity in lowermost Toarcian sediments (Posidonienschiefer) from the Lower Saxony Basin in Germany. We present Hg content, bulk organic geochemistry, and total sulfur in three cores with different levels of thermal maturity. The comparison of Hg data between the three cores indicates that Hg content in the mature/overmature sediments have increased > 2-fold compared to Hg in the immature deposits. Although difficult to confirm with the present data, we speculate that redistribution within the sedimentary sequence caused by the mobility and volatility of the element under relatively high temperatures may have contributed to Hg enrichment in distinct stratigraphic levels of the mature cores. Regardless of the exact mechanism, elevated Hg content together with organic-carbon loss by thermal maturation exaggerate the value of Hg/TOC in mature sediments, suggesting that thermal effects have to be considered when using TOC-normalised Hg as a proxy for far-field volcanic activity.
Essence of Water
Sushel Unninayar

Sushel Unninayar

December 03, 2022
Poem to imagine the “essence” of water as it circulates through the Earth universe, synergistically supporting all environments and living ecosystems, forming, and shaping land and life. The poem links key elements of the interactive global water cycle and international programs to sustainably manage natural, and socioeconomic resources, given the challenge of climate change. It is in awareness of: –Essential Water Variables (EWVs) of the Group on Earth Observations (GEO) Global Water Sustainability (GEOGLOWS) initiative; Earth Observations (EO) for the Water-Energy-Food Nexus (EO4WEF) community activity; UN Sustainable Development Goals (UN SDGs), UNFCCC–Climate Change. The poem hopes to bring water to the forefront of consciousness. Readers are invited to comment on the intangible “feelings” evoked by the poem.
Submesoscale effects on changes to export production under global warming
Genevieve Brett
Daniel Whitt

Genevieve Jay Brett

and 5 more

November 17, 2022
We examine the effects of the submesoscale in mediating the response to projected warming of phytoplankton new production and export using idealized biogeochemical tracers in a high-resolution regional model of the Porcupine Abyssal Plain region of the North Atlantic. We quantify submesoscale effects by comparing our control run to an integration in which submesoscale motions have been suppressed using increased viscosity. The warming climate over the 21st century reduces resolved submesoscale activity by a factor of 2-3. Annual new production is slightly reduced by submesoscale motions in a climate representative of the early 21st-century and slightly increased by submesoscale motions in a climate representative of the late 21st-century. Resolving the submesoscale, however, does not strongly impact the projected reduction in annual production under representative warming. Organic carbon export from the surface ocean includes both direct sinking of detritus (the biological gravitational pump) and advective transport mediated pathways; the sinking component is larger than advectively mediated transport by up to an order of magnitude across a wide range of imposed sinking rates. Submesoscales are responsible for most of the advective carbon export, however, which is thus largely reduced by a warming climate. In summary, our results demonstrate that resolving more of the submesoscale has a modest effect on present-day new production, a small effect on simulated reductions in new production under global warming, and a large effect on advectively-mediated export fluxes.
← Previous 1 2 3 4 5 6 7 8 9 … 77 78 Next →
Back to search
Authorea
  • Home
  • About
  • Product
  • Preprints
  • Pricing
  • Blog
  • Twitter
  • Help
  • Terms of Use
  • Privacy Policy