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Abstract

This paper presents a novel methodology for characterizing and creating a digital twin of turbid
media without the need for reference beams, employing a unique architecture for the physics-informed
neural network. Unlike previous approaches utilizing various deep neural network architectures that
often function as black boxes, our method prioritizes interpretability, offering a clearer understanding
of the underlying processes of light propagation through turbid media. Additionally, unlike classical
solutions relying on reference beams, our approach eliminates the dependence on beam quality and
associated issues prevalent in both internal and external reference-based methods. The possibility
and use case of gradient calculation through this presented digital twin are showcased by solving
the reverse problem to retrieve the initial wavefront shape of the light that passed through this
medium, known as image transmission. Surprisingly, the results surpassed the accuracy of models
directly optimized for this task, underscoring the precision of the proposed digital twin. This capa-
bility represents a pivotal advancement for future developments in neuromorphic and deep learning
computation and training using such a photonic and optical systems.
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1 Introduction

Over the past decade, extensive research has been dedicated to unravelling the complex relationship
between input and output light fields of a multimode optical fiber [IHJ]..When coherent light is injected
into an MMF, it couples to multiple guided modes, leading to complex interference patterns. This
phenomenon, known as speckle patterns, poses challenges for image transmission through MMFs, as
variations at the input facet strongly impact the entire speckle pattern at the output. Interferometric
techniques have revolutionized imaging across these aberrating media by measuring their transmission
matrix and have led to a new generation of optical endoscopses based on single multimode optical fibers
[10) [11] .

Traditionally, measuring the complex valued transmission matrix (TM) of an optical fiber assumes
the preservation of coherence properties during the scattering process and requires an interferomic mea-
surement of transmitted light typically made via off-axis holography with an external reference [6] 12} [13].
Achieving stability in the interferometer, especially over long optical paths, is crucial. Alternatives like
phase-stepping holography with a co-propagating internal reference field have emerged to address sta-
bility concerns [14] [I5] 16]. However, due to phase discontinuities within the internal reference ”blind
spots” appear within the output field of view of the fiber[14] [I5] [16].

Recently, convolutional neural networks (CNNs) [I7H23] and vision transformers [24H27], have been
employed to address the constraints associated with interferometric measurements. Noteworthy studies
showcase the efficacy of these techniques in tasks such as image transmission, wavefront shaping, and
holography at the distal end of multimodal optical fibers (MMFs). However, a common limitation in
most of these methods is the opaque nature of the deep neural network’s actual performance. It acts as
a black box, offering limited insights into how precisely these methods translate speckle patterns into the
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input electric field of the turbid media. Typically, these techniques work on recognising features in input
output relation and are thus unable to transmit unfeatured datasets and thus underutilize the capacity
of the MMF.

An alternative approach has recently emerged for characterizing the MMF fiber, employing a Physics-
Informed Neural Network (PINN) [28]. In this innovative method, a single-layer Complex-Valued Neural
Network (CVNN) has been implemented to map the modulated phase, facilitated by the spatial light
modulator (SLM), onto the amplitude of the recorded polarized light originating from the proximal facet
of the fiber. The versatility of this technique is demonstrated through its cascading capability, allowing
the creation of a multi-layer CVNN for describing stacks of multiple turbid media. However, to fully
harness this method for the digital twin purposes, an extension to all propagating polarizations of light
is essential. Importantly, advancements in the field of deep physical neural networks and optical neural
computation rely on having a digital twin with the capability of gradient calculation for the training of
these systems [29-31]

Another significant challenge associated with the utilization of PINN is the requirement for an ac-
curate understanding of the governing equation dictating light transmission through the media and its
modulating elements. This task proves to be particularly formidable due to the inherently highly non-
linear behavior exhibited by modulating elements, such as the spatial light modulator (SLM). Even with
meticulous calibration and modulation, their capabilities remain confined to the modulation of only one
polarization of light. This limitation introduces additional non-linearity, especially in the presence of
other optical components like polarizers within the system. Thus, the intricate interplay of these ele-
ments further complicates the already challenging task of precisely characterizing and controlling light
transmission through the media.

In this study, we propose a physics-informed neural network by introducing a novel architecture
of neural network. This network not only characterizes the scattering media to indirectly deduce the
transmission matrix for all polarizations but also provides a sufficiently descriptive understanding of the
fiber’s physics. This understanding extends to the point where the network can indirectly contribute to
the complex task of image transmission through turbid media of unknown non-linear modulation, thus
serving as a digital twin of the physical system.

The proposed method boasts substantial advantages over deep learning-based approaches. Firstly, it
is not a black box; its performance is grounded in the physics of the fiber, allowing for direct association
of all optimized weights and biases in the network with physical properties of the system. Furthermore,
the possibility and use case of gradient calculation through this presented digital twin are showcased
by solving the reverse problem. This reverse problem can be described as finding an SLM pattern that
leads to a specific speckle pattern and retrieving the initial wavefront shape of the light that passed
through this medium. In literature, this problem is known as image transmission. Remarkably, our
model surpassed models directly optimized for image transmission, underscoring the level of accuracy
achieved by this digital twin.

Despite the deep learning-based methods that often rely on data’s features, limiting their generaliza-
tion. For instance, a model developed for handwritten digit images may struggle to generalize effectively
to reconstruct images from other datasets, such as those containing natural scenes [19]. In contrast, the
digital twin solution for image reconstruction works based on pixel reconstruction, leading to context-
free, universal image reconstruction. This distinctive feature enhances the adaptability and broader
applicability of our method.

Finally, this digital twin concept enables the utilization of our method for a variety of tasks, partic-
ularly in calculating gradients for training neuromorphic photonic and optical systems [29].

2 Methodology

2.1 Optical system

The optical setup employed in this study is intricately detailed in Figure 1 (a) and (b), comprising three
telescopic systems, a half-wave plate (HWP), a spatial light modulator (SLM), two reflecting flat mirrors,
a beam splitter, a multimode optical fiber (MMF), with the core size of 50um and numerical aperture
of .22, and two microscope objectives (MO), each coupled with a CCD camera. For laser light coupling
into the SLM screen, lenses denoted as L1 and L2 are positioned in a 4f configuration. The reflected
light from the SLM is then guided into the first microscope objective (MO1), effectively conjugating the
SLM screen onto the proximal side of the MMF.



Monitoring the proximal side involves CCD1 and a telescope setup (L4 and MO1). The generated
speckle, along with the distal side of the fiber, is recorded using CCD2, facilitated by a telescopic
arrangement (MO2 and L5). Throughout this setup, the SLM pattern is precisely commanded, and the
resulting speckle pattern is recorded using a computer.

2.2 physical formalism of the optical setup

Taking into account the relatively low power of the continuous laser utilized in this study (less than 1
mw), we can treat the entire system as a linear time-invariant (LTI) system. Consequently, by applying
the superposition principle, we can articulate the behavior of the electric field vector at the output facet
of the fiber in response to the modulated phase from the SLM.

w
E(z,y) = Y Uule.y)e + Z(z,y) (1)

Here, E denotes the electric field vector, while U,, represents a complex vector corresponding to the
electric field at the distal ends of the fiber, resulting from light emitted from a single pixel on the SLM
screen. The Neper number is denoted by e, and ¢,, signifies the modulated phase from the same SLM
pixel. Additionally, Z characterizes the electric field caused by unmodulated light from the SLM. Finally,
2 and y specify the spatial location on the distal side of the MMF in the Cartesian system (see Figure 1
(b)).

Nevertheless, due to the camera’s inherent limitation in recording electric field components or phase,
our observations are confined to values proportional to the electric field’s amplitude. Consequently, we
formulate the camera reading as follows:

a,b 2

B (2,y) = E(z,y) + B (z,y) = )
k

(2)

W .
(Z Uk () +zk<w,y>>

w=1

In this context, we introduce subscripts a and b, to signify components within an orthogonal Cartesian
system established at the distal facet of the fiber. It’s crucial to highlight that this Cartesian system
may not align with the previously defined coordinates (z and y) for the distal fiber facet (see Figure 1
(b)). In this formulation of the electric field intensity for camera reading, there is no strict requirement
for these coordinate systems to align.

In a more general case of the both phase and amplitude modulation we can formulate the electric
field intensity as follows:
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In this expression, the real functions f,. and f; represent the real and imaginary components of the
modulation. It is essential to note that in this generalized scenario, ¢,, does not exclusively define the
phase modulation; rather, it serves as a more comprehensive modulation parameter. This broader form
of modulation will be employed later on for training the digital twin of the optical system. Notably, in
this training process, we seek to discover the non-linear complex modulation, which remains unknown.

2.3 Data

By systematically transmitting multiple images through this turbid media, we construct an extensive
dataset, affording us access to both the amplitude \E| and the phase or the modulation parameter (¢,,).
In this context, our objective is to ascertain the unknown complex variables Uy .,, Zk, and the real
modulation functions, f, and f;, in case of dealing with unknown modulation.

For this study, we acquired a set of 150,000 Spatial Light Modulator (SLM) patterns and their as-
sociated speckle patterns. This collection comprises 120,000 randomly generated SLM patterns, 10,000
patterns showcasing celebrity faces from the CelebA dataset, 10,000 patterns of handwritten digits from
the MNIST dataset, and finally, 10,000 patterns from the CIFAR dataset. Each grayscale image was em-
ployed to modulate light using the SLM, introducing phase shifts ranging from 0 to 7. The corresponding
speckle patterns resulting from these modulations were recorded.

Figure 1 (c) displays examples of images from each dataset along with their corresponding speckle
patterns. Additionally, we conducted Principal Component Analysis (PCA) and Uniform Manifold



Approximation and Projection (UMAP), Figure 1 (d), on the speckle data to visualize the distribution
of this dataset.

The PCA and UMAP projections unequivocally reveal significant distinctions in the statistical char-
acteristics of speckle patterns from each dataset. The clear separation observed in both PCA and UMAP
projections emphasizes the distinct and discernible nature of speckle patterns originating from the various
datasets. One objective of this study is to demonstrate that the physics-informed model, once trained
on one dataset, can be applied universally to other datasets, despite clear statistical differences between
them. This is a challenge that conventional deep learning models cannot easily address, as their perfor-
mance is restricted to the learned features from their training dataset, resulting in limited generalization
capabilities.
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Figure 1: (a) The utilized optical setup, and (b) a schematic illustrating the tangential electric field
vector on the distal facet of the fiber, along with the selected Cartesian coordinate systems for the
speckle patterns and the polarization of the electric field, denoted by the axes pairs (x, y) and (a, b),
respectively.(c) An example of the utilized dataset in this study along with their corresponding speckle
patterns. (d) Principal Component Analysis (PCA) transformation of the speckle patterns used in this
study.
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We have also utilize the data presented in [19] to showcase the usability of the method for unknown
modulation and different optical configuration.

2.4 Neural network architecture

Our proposed approach involves the utilization of a neural network as elucidated in Figure 2 to solve
this probelem. Notably, the network is designed to accept one input which is the phase mask of the
SLM. Accompanying this, we present a tensor operation emulating Equation 3. This is complemented
by a cost function assessing the similarity between the generated speckle by the neural network and the
ground truth, quantified through Mean Absolute Error (MAE).
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Figure 2: (a) Schematic of the utilized physics-informed neural network architecture. The trainable vari-
ables are marked with dashed blue squares, and the non-linear complex transformation of modulation for
the case of known modulation is depicted inside the red square. (b) A simple architecture of a one-input
and one-output deep neural network model that generates the real or imaginary part of the modulation.
(¢) A one-dimensional deep convolutional neural network that applies a similar transformation as in (b)
across all input values.

To understand the utilized tensor operations, we should firstly notice that it is not necessary to
investigate the entire (x,y) location of the output facet of the fiber. Instead, we can reduce the problem
by considering only H selected points in that space. This matter wont effect the generality of the problem
as the H can be taken large enough to cover all the pixels of the recording camera.

Therefore, by considering this selection, Equation 3 can be transformed into a set of H non-linear
equations. Now, both variables with spatial dependencies, Uy, ,(x,y) and Zy(x,y), then only need to be
determined at H points. As Uy ., (z,y) variable has modulation element dependency in its subscript, we
can represent these complex values in a two-dimensional array with the size (W, H,2). First axis covers
the modulation parameter while the second one covers the sampled points from speckle. Finally the last
axis is defined to accommodate the real and imaginary part of U (x,y). On the other hand, for the
Z(z,y), we only have spatial dependency so a tensor with size of (1, H, 2) suffices for its full description.

Moving forward, for the input, the modulated real-valued phase is reshaped into a tensor of size
(1,W,1) and subjected to a complex element-wise operation denoted as e’”, where T represents the
elements of the replicated tensor. Please note that this has been done for the case of the known phase
only modulation. Importantly, the output of this operation is a complex-valued tensor of the modulated
phase. Then we multiply the resulted tensor to additional variable tensor (A) with the same shape
(1, W,1). The reason behind the definition of this additional tensor is that if a pixel of the SLM is
not contributing in the speckle generation (i.e. weak optical coupling such as being out of the accepted
numerical aperture of any of the utilized optical elements) the corresponding number in that variable
tensor can turn into zero. This effectively weights the computed Uy against the efficiency of the optical
setup, in principle it is possible to skip this step however would result in a loss of information as an
entire column of Uy would need to be discarded. Practically we found that addition of this tensor can
not only proves helpful in the training process but also can deliver an insightful understanding of the
optical system coupling behaviour. This will be discussed in details in the following sections.

The resulted complex-valued tensor of the phase modulation is then subjected to matrix multiplication
with the complex-valued version of Uy tensor. Following this multiplication, the complex-valued tensor
is taking the shape of (1, H,1).



The tensor is then added to the unmodulated part, complex-valued tensor (Z), followed by the
calculation of the absolute value and powering to two, as indicated in Equation 3. This whole operation,
except the part for the phase and its correction, needs to be repeated for all instances of ‘6’ to produce
two tensors at the output, namely V, and V;. Based on Equation 3, then the summation of these two
can be equated to the selected pixel’s values from speckle. The MAE loss finds the difference between
the calculated speckle value and the actual measured one.

2.4.1 Unknown Modulation

The presented model can also be applied to create an accurate digital twin of the optical system even
when the modulation remains unknown or unclear. Through the following method, we can discover
this non-linear complex modulation during the training process. To achieve this, we implement the
mathematical model of the optical setup described in equations 3. Instead of relying on the complex
modulation function e/” used for phase-only modulation, we employ a non-linear activated deep neural
network. This neural network, illustrated in Figure 2 (b) as a single-input single-output model, consists of
two hidden layers with 20 nodes each, utilizing Exponential Linear Unit (ELU) activation functions. The
output node is activated with a hyperbolic tangent function. The selection of these activation functions
ensures that the neural network model mimics a continuous and derivable function at all points.

It’s important to note that we need two versions of this neural network to produce the two independent
real-valued functions f, and f; as per equation 3. Another crucial consideration is that these neural
network functions must be applied to the entire modulation element. Therefore, we propose implementing
these functions as a form of multi-layer one-dimensional convolutional neural network, as illustrated in
Figure 2 (c). This implementation, equivalent to Figure 2 (b), ensures that the same function is applied
to all modulating parameters.

2.5 Model training

We implemented the neural network using TensorFlow in Python. For optimization, we used the Adam
optimizer with an initial learning rate of 0.001 for 100 epochs.

3 Results

3.1 ”A” tensor and discovery of the non-linear modulation

The depiction of all 1024 randomly selected points from speckle, alongside the optimized A for both
cases of known and unknown modulation functions, can be observed in Figure 3 (a)-(c), respectively. It’s
crucial to emphasize that, as previously mentioned, the A tensor adopts a shape of (1, W, 1), where W
denotes the number of modulated areas on the SLM screen. Consequently, it can be reshaped to match
the SLM screen shape for visualization purposes.

An intriguing observation is that the A tensor exhibits almost identical shapes in these two distinct
networks, with the sole difference lying in their amplitudes—a point we will delve into later. Additionally,
it’s worth noting that the numerical aperture (NA) shape of the coupling optical element, likely the fiber,
is mirrored in this tensor as a circular curve at the top of the reshaped A tensor. It’s understood that
all SLM pixels falling outside the accepted NA of the fiber would result in very weak optical coupling
into the fiber, thus playing a less significant role in speckle generation compared to those with better
coupling.

Figures 3 (d)-(f) demonstrate the non-linear modulation uncovered by the designed convolutional
network. It’s crucial to note that while this discovered modulation may deviate from the theoretical one,
it does so solely through a linear mapping. This is evident from Equation 3, where substituting f,. + j f;
with L(f. + jf:) + B, where B and L are complex-valued numbers, maintains the equation’s structure.
However, these parameters solely affect the values within the Uy, A, and Zj tensors, influencing the
non-linear modulation behavior via linear complex scaling.

In Figure 3(e), by setting L to 0.019—0.15 and B to 0.48—2.11j, the discovered non-linear modulation
aligns with the theoretical prediction. Here, the Al-discovered modulation is depicted in orange, while
the theoretical modulation and the linearly scaled Al-discovered modulation are represented in blue and
red, respectively.

Similarly, Figure 3(f) presents the same dataset in a three-dimensional axis, where the third dimension
corresponds to the modulation parameter, a scalar number ranging from 0 to 7.
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Figure 3: (a) Location of the randomly selected sampling points on the speckle. (b) and (¢) Extracted
tensor A for the cases of known and unknown modulation. (d) Discovered real (f,) and imaginary
parts(f;) of the non-linear modulation. (e) Linearly scaled version of the discovered transformation and
its comparison to the ground truth. (f) Same result as (e) with the modulation parameter also shown
across the third dimension.

3.2 Polarization dependent transmission matrix

Figure 4 (al) and (a2) shows the absolute value of the both discovred tesnors U, amd Up. In these figures
the x axis is indicating the SLM pixel index while vertical axis shows the sampled point index from the
speckle side. we can also calculate the cosine simality (CS) similarity matrix of these two tensor based
on the follwoing eqution

CSy = Up.U} (4)

In this analysis, Uy, represents the normalized Uy tensor, where all rows have an amplitude equal
to one, while U,I denotes the complex conjugate transpose of Up. Figure 4 (bl) and (b2) display the
absolute value of the calculated cosine similarity between U, and Uy, with a closer examination provided
in the zoomed versions (c1) and (c2).

An intriguing observation is the presence of parallel lines in the cosine similarity plot, particularly
noticeable adjacent to the main diagonal elements. Remarkably, these lines are spaced at intervals of 32,
indicating a relationship between pixels from the upper and lower rows of the SLM. This suggests that
neighboring pixels on the SLM screen exhibit similarity in their transmission matrix rows, as illustrated
in Figure 4 (al) and (a2).

To further elucidate this phenomenon, we can extract a row from the cosine similarity matrix and
reshape it back to match the SLM screen shape, as demonstrated in Figure 4 (d1) for the 500th row
of Figure 4 (cl). Evidently, pixels close to the selected pixel display similar transmission matrix rows,
whereas the similarity diminishes as we move further away. This observation cannot be attributed to
the selected dataset alone, as there is no correlation between randomly generated pixel data. Instead,
it stems from the underlying physics of the optical system, indicating that spatially close pixels on the
SLM exhibit similar physical characteristics and effects in speckle generation.

Another intriguing observation arises when calculating the cosine similarity (CS) of each row in Figure
4 (al) to the corresponding row in Figure 4 (a2). This yields 1024 values, each indicating the similarity
between the governing equations for different polarizations. It’s important to note that Figures 4 (al)
and (a2) depict the transmission matrix for perpendicular polarizations of light at the speckle side. These
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1024 values can then be reshaped to match the SLM screen shape and visualized as depicted in Figure
4 (d2).

Additionally, it’s worth highlighting that each pixel of the SLM is coupled into the fiber at a different
angle, based on the utilized optical system. Pixels located at the center of the numerical aperture are
coupled perpendicularly to the distal fiber’s facet axis, while pixels farther away are inserted at an angle.
Figure 4 (d2) illustrates that when the insertion angle is perpendicular to the distal fiber facet, the output
speckles are polarized, evident from the strong cosine similarity in the center of this figure (red color).
Similarly, as the insertion angle increases (i.e., moving away from the center of the numerical aperture),
the similarity between the two polarization transmission matrices decreases, resulting in polarization
loss. This observation aligns well with the physics of the fiber, as perpendicular insertion angles lead to
strong coupling of lower-order modes that maintain polarization better.

3.3 Digital-Twin of the scattering media

The primary function of this trained physics-informed model is to predict the speckle pattern based on
the given SLM input. This capability is showcased across all testing datasets in Figures 5 and 6, where
both 1024 and 10,000 sampling points from the speckle are analyzed.

In these figures, panels (a) to (d) illustrate the reconstruction of sampled speckle patterns and their
disparities from the ground truth for SLM inputs derived from randomly generated images, CIFAR,
celebrity faces, and MNIST, respectively. The associated reconstruction errors are graphically represented
in panel (el). Notably, the model exhibits superior performance with randomly generated images but
faces more challenges with the MNIST dataset.

Moreover, Figures 5 and 6 provide UMAP projections of the sampled speckle from the MNIST dataset,
with each projected speckle colored according to the handwritten digit it represents. Remarkably, both
the ground truth (Figures 5 and 6 (e2)) and the reconstructed speckle (Figures 5 and 6 (e3)) exhibit
identical topology and clustering of handwritten digits. This suggests that the reconstructed sampled
speckle effectively captures the patterns and features of the MNIST dataset.

This promising outcome underscores the potential for reverse transformation using the trained model.
In the next section, we will employ the model to predict the SLM pattern required to generate a given
speckle pattern. Unlike previous deep learning models, this approach stands out as we leverage the
physical equations of the fiber to address this problem.
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Figure 5: (a)-(d) Examples of speckle pattern reconstruction for randomly generated images, CIFAR,
celebrity faces, and MNIST, respectively. This reconstruction was performed using only 1024 points of
the speckle, and the plotted patterns are interpolated by the nearest neighbor method to produce an
image. (el) Mean absolute error (MAE) of the reconstructed speckle pattern. (e2) and (e3) UMAP
(Uniform Manifold Approximation and Projection) of the ground truth speckle and the reconstructed
one, respectively.

3.4 Universal pixel-wise image transmission through the fiber

As discussed previously, the presented digital twin of the optical system offers a significant advantage:
the ability to compute gradients of its output, enabling various applications. One such application is
image transmission through the fiber.

For this task, we propose utilizing the neural network depicted in Figure 7(a). This model comprises
two elements. Firstly, a single-layer fully connected layer, consisting only of weights without biases, is
connected to a constant input. The output of this layer is activated using a sigmoid activation function
multiplied by the constant 7. This ensures that the output of each node in the layer falls within the
range of zero to w. This step aims to find the SLM pattern corresponding to the given speckle. Secondly,
the output of this single layer is connected to the previously trained physics-informed model, which
translates the given SLM pattern from the previous layer into speckle patterns (forward model). To
prevent changes in the weights and biases of the physics-informed model during training, the model is
frozen.
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Figure 6: (a)-(d) Examples of speckle pattern reconstruction for randomly generated images, CIFAR,
celebrity faces, and MNIST, respectively. This reconstruction was performed using only 10,000 points
of the speckle, and the plotted patterns are interpolated by the nearest neighbor method to produce
an image. (el) Mean absolute error (MAE) of the reconstructed speckle pattern. (e2) and (e3) UMAP
(Uniform Manifold Approximation and Projection) of the ground truth speckle and the reconstructed
one, respectively.

Now that the entire model is drivable, we can apply gradient-based optimization to calculate the SLM
pattern (through the single layer at the beginning) to produce a specific given speckle pattern (through
the physics-informed model). However, this approach often leads to overfitting, posing a significant
challenge. Although the physics-informed model accurately translates MNIST, CIFAR, or face images
into their respective speckle patterns with an MAE loss exceeding 20, overfitting the single layer can
yield a substantially lower loss, thereby producing inaccurate results.

To address this issue, we introduce a regularization method depicted in Figure 7(b). Leveraging the
fact that the reconstructed image is stored in the weights of the single layer (due to the absence of
biases), we extract these weights and reshape them into the expected image. Human-perceivable images
exhibit grid topology and a sense of locality, meaning nearby pixels have higher correlation than those
farther apart. Additionally, besides randomly generated data, images tend to be smooth, with variations
in pixel values between adjacent pixels typically not strong.

This concept is operationalized through a kernel (weights) regularizer for the layer, where the spatial
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(a) Image reconstruction model (b) Diagram of the utilized regularization method
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Figure 7: (a) Schematic of the model utilized for the image transmission task. (b) Schematic of the
developed regularization technique. (¢) An example of the reconstructed image of various datasets when
only 1000 sampled points of the speckle have been used for the physics-informed model. This plot
displays both image reconstruction and its corresponding spatial error when the proposed regularization
has not been used (R/without) and the reconstruction when the proposed regularization has been used
(R/with). (d) Same result as (c) but when the physics-informed model has been trained using 10,000
points of the speckle. (c1)-(c3) Image reconstruction fidelity in terms of the mean absolute error (MAE)
for all the developed models for the MNIST, CIFAR, and celebrity faces datasets, respectively.

~

differences of the image in both horizontal and vertical directions are calculated. These differences,
represented as e; and ey in Figure 7(b), are utilized to introduce another loss term during training,
comprising weighted sums of the mean and square of these values. This combination forms a Lasso
regularization, which should make sharp changes sparse in the resulting image, while the ridge (sum of
squares) decreases the value of the differences.

Figures 7(c) and 7(d) demonstrate the advantage of this regularization in image transmission across
all testing datasets in this study. It’s evident that regularization enhances the performance of image
reconstruction for all utilized testing sets. It’s important to note that the physics-informed model is
solely trained on randomly generated images, showcasing the universality of the image transmission
model and its independence from dataset context.

3.5 Different optical setup

To assess the proposed method in a different optical configuration, we utilized data from [I9]. Their
experimental setup employed a one-meter-long step-index fiber with a core size of 105 pm, capable of
carrying approximately 9000 optical modes, using a 532nm wavelength continuous laser. Their optical
arrangement aimed to couple image intensity into a multimode optical fiber using a polarizing beam
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splitter, a half-wave plate, and a microscope objective. The resulting speckle was captured using a
4f configuration and a digital camera. Their methodology involved a complex matrix correlating the
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Figure 8: The discovered complex modulation and transmission matrices, along with their cosine simi-
larity matrices, for the dataset used in the study by Caramazza et al. (2019) employing our proposed
method.

image amplitude (square root of the intensity) at the two ends of the fiber, hence their provided data is
amplitude-based. This is evident from the sorted unique values of the pixels in their recorded speckle,
as illustrated in Figure 8(a) (in blue). The pattern formed by these blue values indicates the square
root non-linear transformation over the data. However, when we calculate the square of the provided
amplitude data and examine the sorted unique values, a straight line is formed (in orange), corresponding
to intensity recording of the camera. It’s important to note that our methodology requires speckle in
intensity rather than amplitude (see Figure 2).

Regarding the input use case of amplitude or intensity for the SLM pattern in their dataset, the
proposed convolutional network for an unknown modulation should be able to find the appropriate non-
linear mapping during model training. For training, we randomly selected 10,000 samples from the
speckle due to the higher number of modes that this optical setup can accommodate. Training was
conducted over 100 epochs on their training dataset (45,000 natural science images from the ImageNet
dataset), while testing was exclusively performed on their testing set (motion images in the Mybridge
dataset). Here are the discovered characteristics of their system using our proposed physics-informed
neural network.

Figure 8(b) depicts the discovered A tensor in the proposed algorithm. Similar to our example, this
graph indicates lower coupling efficiencies due to the numerical aperture of the optical components, as
the SLM pixels at the corners of the screen represent weaker coupling. Figure 8(c) shows the real and
imaginary parts of the modulation in blue and orange, respectively, with the modulation parameter on
the x-axis. Figure 8(d) displays complex modulation, with the real and imaginary parts of the modulation
on the horizontal and vertical axes, respectively, while the color of each point represents the modulation
parameter.

Figures 8(el) and (e2) represent the transmission matrix for both polarizations, and similar to the
previous optical setup, their cosine similarity matrices are calculated and represented in Figures 8(f1)
and (f2), with a zoomed version in (gl) and (g2), respectively. As in the previous case, parallel lines
appearing in the cosine similarity matrix are due to the grid topology of the SLM, with the distance
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between lines now being 92 pixels, indicating the use of 92x92 pixel images in their experiment.

The reshaped versions of the 4000th row of the cosine similarity matrix to SLM screen shape for
Figures 8(fl) and (f2) are also presented in (hl) and (h2), respectively. Similar to our setup, this
demonstrates effective perpendicularity between the effects of the SLM pixels located far apart on the
SLM screen.

3.5.1 Image transmission

We have also tested the developed physics-informed model for this optical setup in the intricate task of
image transmission. The results and their comparison to the original article are illustrated in Figure 9.

From these results, it is evident that our proposed model exhibits a higher SSIM over their model,
despite not being directly optimized for image transmission. It is important to note that all weights in
our proposed model are optimized to achieve the best reconstruction of the speckle based on the given
SLM pattern. However, image transmission represents the reverse task, mapping from speckle to the
SLM pattern.

Punch Parrot Comparison of the
. reconstruction performance

Proposed
method

ComplexNet

SP

Rec

GT

Diff

cat horse punch parrot

Figure 9: An example of image reconstruction using the proposed method for the testing dataset utilized
in the study by Caramazza et al. (2019). A comparison with ComplexNet, developed by Caramazza et
al., is also presented in the form of a bar chart.

The achieved improvement stems from a more accurate model of the physics of light scattering. In
their method, they considered a complex matrix relating the absolute value of the input electric field
amplitude to the output one, without considering phase information, which is not an accurate assumption.
Moreover, our model considers different transmission matrices for different polarizations of light, unlike
their model, which contributes significantly to the observed enhancement.

4 Conclusion

In this study, we introduce an innovative approach to characterizing turbid media without the need for
a reference beam, thanks to the use of a physics-informed neural network. This method captures the
polarization-based transmission matrix without requiring direct polarization measurement, providing a
deeper understanding of light scattering and enabling the creation of an accurate digital twin for inverse
problems such as image transmission.

Our approach diverges from traditional deep learning models, which often lack transparency and
operate as black-box systems. These conventional models typically rely heavily on the data’s features,
limiting their generalizability and constraining them to their training datasets. In contrast, our method
demonstrates the high precision with which transmission matrices can be extracted. These matrices
enable not only the forward transmission of information from SLM pattern to speckle but also the
precise reconstruction of the SLM pattern from a given speckle pattern, facilitated by our proposed
regularization technique and the ability to compute gradients through the digital twin.

Consequently, our method offers a fully interpretable framework relevant to a range of light scattering
applications, opening new opportunities for significant advancements in the field. Additionally, this
approach is valuable for applications in physics-based neural networks where the system’s gradient is
required, providing a pathway to optical and photonics-based artificial intelligence.
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