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ST-CDM MIMO Radar Imaging with
Sparse Linear Arrays
Hangyu Liu, Xiaolei Shang, and Ronghao Lin

Abstract—We consider significantly enhancing the angular res-
olution of a single-chip multiple-input multiple-output (MIMO)
radar sensor equipped with only 3 transmit and 4 receive
antennas for radar imaging. We adopt the slow-time code-division
multiplexing (ST-CDM) transmission scheme, which is a low-cost
viable option to attain a large virtual array without reducing the
unambiguous Doppler range. Moreover, to significantly improve
the angular resolution without increasing antenna numbers, we
introduce a practical 3 × 4 sparse linear array (SLA) design. We
extend the iterative adaptive approach (IAA) to the slow-time IAA
(ST-IAA) algorithm, aiming to mitigate the impact of waveform
separation residuals and the high angular sidelobes on ST-CDM
MIMO radar imaging equipped with SLAs. Furthermore, we
construct a single-chip ST-CDM MIMO radar prototype with the
3 × 4 SLA design for experimental validations. The numerical and
experimental results are provided to demonstrate the enhanced
imaging performance of the radar prototype when used with the
ST-IAA algorithm.

Index Terms—Multiple-input multiple-output (MIMO) radar,
slow-time code-division multiplexing (ST-CDM), sparse linear
array (SLA), single-chip radar sensor, iterative adaptive approach
(IAA), slow-time IAA (ST-IAA)

I. Introduction

MULTIPLE-INPUT multiple-output (MIMO) radar has
become a standard in diverse applications due to its

cost-effectiveness and power efficiency [1] [2]. The MIMO
framework enables the formation of a large virtual array with
𝑀 × 𝑁 elements using 𝑀 transmit and 𝑁 receive antennas,
resulting in enhanced angular resolution using fewer physical
antennas and fewer receive channels compared to traditional
radar systems. Achieving waveform orthogonality at the trans-
mitters is a crucial aspect of attaining the large MIMO virtual
array. For popular linear frequency-modulated continuous-wave
(LFMCW) MIMO radars, the primary methods to achieve
waveform orthogonality are time-division multiplexing (TDM),
Doppler-division multiplexing (DDM), and slow-time code-
division multiplexing (ST-CDM) [3].

ST-CDM exhibits significant advantages over its TDM and
DDM counterparts. As shown in Fig. 1, each transmitter of
TDM emits a probing waveform alternatingly, whereas all
transmitters of DDM and ST-CDM emit waveforms simul-
taneously. Although TDM has the advantages of convenient
hardware configuration and signal processing, DDM and ST-
CDM allow higher radiation power [4] due to the simultaneous
signal emissions. Moreover, unlike TDM, they do not suffer from
virtual array distortions caused by the motion-induced Doppler
shifts [5]. Furthermore, the pulse repetition interval (PRI) 𝑇PRI
of TDM is 𝑀 times that of the simultaneous transmission
methods. Since the maximum unambiguous detectable velocity
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Fig. 1. An example of LFMCW waveforms in a coherent processing interval
(CPI) transmitted by a MIMO radar with two transmit channels. (a) TDM:
each transmit channel is switched on and off alternatingly. (b) DDM and ST-
CDM: all transmit channels transmit simultaneously utilizing different phase
codes from one period to another (over slow-time).

[6] 𝑣max is inversely proportional to 𝑇PRI, 𝑣max of TDM is
reduced by a factor of 𝑀 . Waveform orthogonality of DDM
and ST-CDM is achieved through the multiplication of each
slow-time waveform (i.e., from one PRI to another) within
a coherent processing interval (CPI) with a phase code. The
phase codes of DDM shift different transmit signals to different
zones of the Doppler spectrum [7]. Despite the convenient
waveform separation through band-pass filters (BPF) over slow-
time, DDM suffers from the same drawback of reduced 𝑣max
as TDM, by a factor of 𝑀 . In comparison, ST-CDM exhibits
superior spectral efficiency by using spreading codes over slow-
time and avoids the reduction of 𝑣max, rendering it a more
suitable option for many MIMO radar applications [8].

Besides employing ST-CDM for trying to achieve waveform
orthogonalization, it is also essential to consider using sparse
linear arrays (SLAs) [9] [10] to significantly enhance the
angular resolution for MIMO radar imaging. Owing to cost
and size constraints, current MIMO radar sensors are typically
equipped with a single transceiver chip [11]. For instance, the
AWR2243 radar chip [12] from Texas Instruments (TI) has 3
transmit channels and 4 receive channels. As a result, the single-
chip radar sensors equipped with AWR2243 consist of only
3 transmit antennas and 4 receive antennas. If such a single-
chip sensor adopts a simple 3 × 4 uniform linear array (ULA)
design, the angular resolution of the virtual array is limited to
approximately 8.5°, making it a challenge to distinguish adjacent
targets at relatively long distances. The SLAs can increase the
array aperture without adding more antennas, thereby achieving
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higher angular resolution, which is particularly beneficial for
currently available single-chip MIMO radar sensors.

In summary, the ST-CDM MIMO radar with SLAs offers
the advantages of larger unambiguous Doppler range and much
higher angular resolution than their TDM/DDM and ULA
counterparts. However, both ST-CDM and SLAs introduce
significant challenges to high quality radar imaging. On the one
hand, the imperfect waveform separation [13], such as the con-
ventional matched filtering (MF), can result in each separated
transmit signal of the ST-CDM radar being contaminated by
unwanted interference from other transmit channels, leading to
the presence of strong “waveform separation residuals”. These
residuals manifest as high sidelobes in the Doppler spectra of
radar imaging. On the other hand, due to the array aperture
enlargement with a small number of antennas, the SLAs tend
to exhibit high sidelobes [14] in the angular spectra of radar
imaging when using conventional beamforming.

To attain high quality imaging performance using the ST-
CDM MIMO radar with SLAs, we need to mitigate the
aforementioned two categories of high sidelobes. In the field
of spectral estimation, the nonparametric iterative adaptive
approach (IAA) [15]–[17] is a classic hyperparameter-free algo-
rithm, which can process diverse experimentally measured data
without the need to tune user parameters. The IAA algorithm not
only exhibits strong robustness similar to the conventional MF
method, but also has the capability to achieve super-resolution
and low sidelobe levels with a single snapshot, making it suitable
for the highly dynamic environment [18]. These advantages
have made IAA receive increasing attention in recent years
[19]–[21]. We extend the IAA algorithm based on the signal
model of the ST-CDM MIMO radar with SLAs, enabling the
high quality Doppler-angle imaging and hence the accurate
estimation of Doppler and angular information of targets. The
extended algorithm is referred to as the slow-time IAA (ST-
IAA) algorithm, which has been preliminarily investigated in
our recent work [22]. There are several other well-known
hyperparameter-free algorithms that can be extended in a similar
manner for use in ST-CDM, such as sparse iterative covariance-
based estimation (SPICE) [23] [24], likelihood-based estimation
of sparse parameters (LIKES) [25], and sparse learning via
iterative minimization (SLIM) [26]. We will demonstrate in this
paper that the performance of ST-IAA is more powerful than
these algorithms.

We choose to use the cascade imaging radar module [27] from
TI as our experimental platform, which employs four AWR2243
chips cascaded together, consisting of a total of 12 transmit
and 16 receive antennas. Relevant series of multi-chip and
single-chip radar sensors from TI have been applied in various
research studies [28]–[31]. The AWR2243 chip’s capability for
binary phase modulation per chirp allows us to implement ST-
CDM with slow-time random binary codes on this experimental
platform. Furthermore, for experimental convenience, we select
3 transmit and 4 receive antennas from the imaging radar board,
constructing a 3×4 SLA design that is suitable for a single-chip
radar sensor. Appendix A provides a detailed description of the
antenna selection process. This leads to the creation of an ST-
CDM MIMO radar prototype with a 3 × 4 SLA. Numerical
and experimental verifications of the ST-IAA algorithm are

TABLE I
Abbreviations and Expansions

3-D three-dimensional
ADC analog-to-digital converter
BPF band-pass filter
CPI coherent processing interval
DDM Doppler-division multiplexing
FFT fast Fourier transform
LFMCW linear frequency-modulated continuous-wave
IAA iterative adaptive approach
IF intermediate frequency
LIKES likelihood-based estimation of sparse parameters
LO local oscillator
LPF low-pass filter
LVDS low voltage differential signaling
MF matched filtering
MIMO multiple-input multiple-output
NRMSE normalized root-mean-square error
PRI pulse repetition interval
SLA sparse linear array
SLIM sparse learning via iterative minimization
SNR signal-to-noise ratio
SPICE sparse iterative covariance-based estimation
ST-CDM slow-time code-division multiplexing
ST-IAA slow-time iteration adaptive approach
TDM time-division multiplexing
TI Texas Instruments
ULA uniform linear array

conducted based on this radar prototype. The results indicate
that ST-IAA significantly improves the imaging quality of the
ST-CDM MIMO radar prototype with the 3 × 4 SLA design
in comparison to conventional methods, for example, enabling
the distinction of two adjacent cars traveling side by side at
a distance of approximately 55 meters. Our contributions are
summarized as follows.

1) We construct a single-chip ST-CDM radar prototype with
a 3 × 4 SLA we designed.

2) We demonstrate that the robust ST-IAA algorithm can be
used to suppress waveform separation residuals of ST-
CDM and the angular sidelobe levels of SLAs.

3) The experiments indicate that the single-chip ST-CDM
radar with the 3 × 4 SLA, when used with ST-IAA,
can minimize the occurrence of velocity ambiguity and
achieve an angular resolution of about 2°.

The remainder of this paper is organized as follows. Section II
establishes a signal model for the ST-CDM MIMO radar with
𝑀 transmit and 𝑁 receive antennas. In Section III, we introduce
the ST-IAA algorithm and provide a complete data processing
flow. Section IV provides numerical examples based on the
parameters and arrays of our radar prototype to validate the
imaging performance of ST-IAA. In Section V, we conduct
a series of experiments using the radar prototype to evaluate
the practical performance of using ST-IAA on the ST-CDM
MIMO radar with SLAs. Section VI serves as the conclusion.
Appendix A provides the antenna positions of the 3 × 4 SLA
used in our radar prototype. All abbreviations used in this paper
are summarized in Table I.

Notation: We use bold lowercase letters to denote vectors
and bold uppercase letters to denote matrices. (·)T and (·)H

denote the transpose and conjugate transpose of a vector
or matrix, respectively. (·)−1 stands for the inverse of the



3

matrix. The superscript of a scalar (·)∗ denotes the complex
conjugate operation. |·| represents the element-wise modulus.
∥·∥ denotes the 𝑙2-norm. We use C𝐼1×𝐼2×···×𝐼𝑁 to represent the
set of all complex-valued tensors of order 𝑁 . The elements of
D ∈ C𝐼1×𝐼2×···×𝐼𝑁 is denoted by 𝑑𝑖1𝑖2 · · ·𝑖𝑁 . This paper utilizes
tensors up to order 3. The tensors of order 1 and order 2 are
commonly referred to as vectors and matrices, respectively.
⊙ and ⊗ represent the Hadamard product and the Kronecker
product, respectively.

II. Signal Model of ST-CDM MIMO Radar
Fig. 2(a) shows the diagram of a typical ST-CDM LFMCW

MIMO radar system consisting of 𝑀 transmit channels and 𝑁
receive channels. For ease of presentation, this diagram depicts
the scenario of a single-chip radar with 𝑀 = 3 and 𝑁 = 4.
The LFMCW waveform and dechirp processing at each receive
channel are illustrated in Fig. 2(b). The signal transmission
process of the radar system from the transmit channels to the
receive channels is described below and the signal model is
provided as well.

A. Transmit Channels
The TI radar transceiver chip is able to store the complex

envelopes of all transmitted chirps. In this paper, all chirps are
assumed to possess the same complex envelope, which is given
by

𝐴c (𝑡) = 𝑒 𝑗 𝜋𝛽𝑡
2
rect

(
𝑡 − 𝑇c/2
𝑇c

)
, (1)

where 𝛽 is the slope of the rising portion of the chirp, 𝑇c is
the duration of the rising portion and rect(𝑡) is the normalized
rectangular function which is 1 if −0.5 ≤ 𝑡 ≤ 0.5 and 0
otherwise. The CPI is assumed to contain 𝑃 chirps, or in
other words, 𝑃 slow-time samples. The ST-CDM MIMO radar
uses 𝑀 transmit channels to simultaneously transmit the chirps
multiplied with different phase codes over slow-time. Let 𝑐𝑚𝑝
denote the random binary code adopted by the 𝑚-th transmit
channel at the 𝑝-th chirp. Then the transmitted baseband signal
of the 𝑚-th transmit channel in a CPI can be represented as

𝐴𝑚 (𝑡) =
𝑃∑︁
𝑝=1

𝐴𝑚𝑝 (𝑡) =
𝑃∑︁
𝑝=1

𝑐𝑚𝑝𝐴c [𝑡 − (𝑝 − 1) 𝑇PRI] . (2)

To be radiated to the space, the baseband signals must be
modulated onto a sinusoidal carrier with frequency 𝑓c. The
emitted signal from the 𝑚-th transmit antenna is expressed as

𝑠𝑚 (𝑡) = 𝑒 𝑗2𝜋 𝑓c𝑡
𝑃∑︁
𝑝=1

𝑐𝑚𝑝𝐴c [𝑡 − (𝑝 − 1) 𝑇PRI] . (3)

B. Receive Channels
The emitted signals are reflected after hitting the targets and

their time delayed replicas are captured by the receive channels.
The time delay of the propagation from the 𝑚-th transmit
antenna to a target and then to the 𝑛-th receive antenna is given
by

𝜏𝑚𝑛 (𝑡) =
2 (𝑟 + 𝑣𝑡)

𝑐
+ (𝑥𝑚 + 𝑦𝑛)

sin (𝜃)
𝑐

, (4)
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Fig. 2. (a) The diagram of a ST-CDM LFMCW MIMO radar with 3 transmit
and 4 receive antennas. (b) Illustrations of the signal of local oscillator (LO),
the signal of the 𝑛-th receiver, the IF signal and the captured raw data.

where 𝑐 is the speed of light; (𝑟, 𝑣, 𝜃) are the range, radial
velocity and angle of the target, respectively. 𝑥𝑚 is the position
of the 𝑚-th transmit antenna relative to the first one. Likewise,
𝑦𝑛 is the position of the 𝑛-th receive antenna relative to the first
one. That is to say, 𝑥1 = 0 and 𝑦1 = 0. And the spacing between
these antennas can be non-uniform. Then, as shown by the solid
zigzag line in Fig. 2(b), the received signal by the 𝑛-th receiver
is

𝑑𝑛 (𝑡) = 𝜂
𝑀∑︁
𝑚=1

𝑠𝑚 [𝑡 − 𝜏𝑚𝑛 (𝑡)]

= 𝜂

𝑀∑︁
𝑚=1

𝑒 𝑗2𝜋 𝑓c [𝑡−𝜏𝑚𝑛 (𝑡 ) ]
𝑃∑︁
𝑝=1

𝑐𝑚𝑝

× 𝐴c [𝑡 − 𝜏𝑚𝑛 (𝑡) − (𝑝 − 1) 𝑇PRI] , (5)

where 𝜂 is the reflection coefficient of the target. We assume that
2𝑟/𝑐 ≫ 2𝑣𝑡/𝑐 + (𝑥𝑚 + 𝑦𝑛) sin (𝜃) /𝑐. Define 𝜏0 ≜ 2𝑟/𝑐. Then
𝑑𝑛 (𝑡) can be approximated by:

𝑑𝑛 (𝑡) ≈ 𝜂
𝑀∑︁
𝑚=1

𝑒 𝑗2𝜋 𝑓c [𝑡−𝜏𝑚𝑛 (𝑡 ) ]
𝑃∑︁
𝑝=1

𝑐𝑚𝑝

× 𝐴c [𝑡 − 𝜏0 − (𝑝 − 1) 𝑇PRI] . (6)

Subsequently, the received signals need to be demodulated with
the signal of a local oscillator (LO), as shown by the dashed
zigzag line in Fig. 2(b). The expression of the LO signal is
shown as follows

𝑠LO (𝑡) = 𝑒 𝑗2𝜋 𝑓c𝑡
𝑃∑︁
𝑝=1

𝐴c [𝑡 − (𝑝 − 1) 𝑇PRI] . (7)
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The mixed signal of 𝑑𝑛 (𝑡) and 𝑠LO (𝑡), which is represented
as 𝑑𝑛 (𝑡) 𝑠∗LO (𝑡), mainly contains two frequency components,
namely high frequency and intermediate frequency (IF) ones,
of which the latter carries useful information about the target.
Subsequently the mixed signal passes through the low-pass filter
(LPF) on each receiver and the output IF signal is expressed as

𝑖𝑛 (𝑡) = 𝜂
𝑀∑︁
𝑚=1

𝑒− 𝑗2𝜋 𝑓c𝜏𝑚𝑛 (𝑡 )
𝑃∑︁
𝑝=1

𝑐𝑚𝑝

× 𝑒 𝑗 𝜋𝛽𝜏2
0 𝑒− 𝑗2𝜋𝛽𝜏0 [𝑡−(𝑝−1)𝑇PRI ]

× rect
[
𝑡 − (𝑝 − 1) 𝑇PRI − 𝑇c/2

𝑇c

]
, (8)

As shown by the thick solid lines in Fig. 2(b), the IF signal 𝑖𝑛 (𝑡)
is divided by rect() function into 𝑃 partitions, one of which can
be written as

𝑖𝑛𝑝 (𝑡) = 𝜂
𝑀∑︁
𝑚=1

𝑐𝑚𝑝𝑒
− 𝑗2𝜋

[
2𝑟
𝜆
+ 2𝑣𝑡
𝜆

+(𝑥𝑚+𝑦𝑛 ) sin(𝜃 )
𝜆

]
× 𝑒 𝑗 𝜋𝛽𝜏2

0 𝑒− 𝑗2𝜋𝛽𝜏0 [𝑡−(𝑝−1)𝑇PRI ] ,

(𝑝 − 1) 𝑇PRI ≤ 𝑡 ≤ 𝑇c + (𝑝 − 1) 𝑇PRI, (9)

where 𝜆 = 𝑐/ 𝑓c is the wavelength. Since 𝜏2
0 ≪ 𝜏0 = 2𝑟/𝑐 ≪ 1,

this partition of the IF signal can be approximated as

𝑖𝑛𝑝 (𝑡) ≈ 𝜂′𝑒− 𝑗2𝜋𝑦𝑛
sin(𝜃 )
𝜆 𝑒− 𝑗2𝜋𝛽𝜏0 [𝑡−(𝑝−1)𝑇PRI ]

×
𝑀∑︁
𝑚=1

𝑐𝑚𝑝𝑒
− 𝑗2𝜋𝑥𝑚 sin(𝜃 )

𝜆 𝑒− 𝑗2𝜋
2𝑣𝑡
𝜆 , (10)

where 𝜂′ = 𝜂𝑒− 𝑗2𝜋
2𝑟
𝜆 can be regarded as the complex-valued

amplitude of the target. The IF signal 𝑖𝑛𝑝 (𝑡) is sampled by
the analog-to-digital converter (ADC) at each receiver and
converted to the captured raw data 𝑑𝑛𝑝𝑞 , 𝑞 = 1, · · · , 𝑄, with
𝑄 denoting the fast-time sample number corresponding to each
transmitted chirp, 𝑝 = 1, · · · , 𝑃, with 𝑃 denoting the slow-time
sample number (i.e., the number of chirps within a CPI), and
𝑛 = 1, · · · , 𝑁 , with 𝑁 denoting the receive antenna number. Let
𝑡 = (𝑝 − 1) 𝑇PRI + (𝑞 − 1) Δ𝑇s, in which Δ𝑇s is the sampling
interval for the ADC. Then

𝑑𝑛𝑝𝑞 = 𝑖𝑛𝑝 [(𝑝 − 1) 𝑇PRI + (𝑞 − 1) Δ𝑇s]
= 𝜂′𝑒− 𝑗2𝜋𝑦𝑛

sin(𝜃 )
𝜆 𝑒− 𝑗2𝜋𝛽𝜏0 (𝑞−1)Δ𝑇s

×
𝑀∑︁
𝑚=1

𝑐𝑚𝑝𝑒
− 𝑗2𝜋𝑥𝑚 sin(𝜃 )

𝜆 𝑒− 𝑗2𝜋
2𝑣
𝜆
(𝑝−1)𝑇PRI

× 𝑒− 𝑗2𝜋 2𝑣
𝜆
(𝑞−1)Δ𝑇s . (11)

Note that 𝑣Δ𝑇s/𝜆 ≪ 1. So 𝑒− 𝑗2𝜋
2𝑣
𝜆
(𝑞−1)Δ𝑇s is approximately

constant within each chirp period. For notational simplicity, we
denote 𝜂′𝑒− 𝑗2𝜋 2𝑣

𝜆
(𝑞−1)Δ𝑇s as 𝛼. Then (11) can be approximated

as follows

𝑑𝑛𝑝𝑞 ≈ 𝛼𝑒− 𝑗2𝜋𝑦𝑛
sin(𝜃 )
𝜆 𝑒− 𝑗2𝜋𝛽𝜏0 (𝑞−1)Δ𝑇s

×
𝑀∑︁
𝑚=1

𝑐𝑚𝑝𝑒
− 𝑗2𝜋𝑥𝑚 sin(𝜃 )

𝜆 𝑒− 𝑗2𝜋
2𝑣
𝜆
(𝑝−1)𝑇PRI , (12)

which describes a certain sampling point of the raw data
captured by the ST-CDM transmission scheme. Note that (12)

TABLE II
The ST-IAA algorithm

Input
𝒃𝑘r =

[
𝑏11𝑘r , · · · , 𝑏1𝑃𝑘r , · · · , 𝑏𝑁1𝑘r , · · · , 𝑏𝑁𝑃𝑘r

]T

𝑨 =
[
𝒂
(
𝜃1, 𝑣̃1

)
, · · · , 𝒂

(
𝜃1, 𝑣̃𝐾v

)
, · · ·

, 𝒂
(
𝜃𝐾θ

, 𝑣̃1
)
, · · · , 𝒂

(
𝜃𝐾θ

, 𝑣̃𝐾v
) ]

Initiation

create 𝒔𝑘r =
1
𝑁
𝑨H𝒃𝑘r

create 𝒑 =
[
𝑝11, · · · , 𝑝1𝐾v , · · · , 𝑝𝐾θ1, · · · , 𝑝𝐾θ𝐾v

]T

where 𝑝𝑘θ𝑘v =
��𝑠𝑘θ𝑘v𝑘r

��2

Iteration

repeat

𝑹 = 𝑨diag{𝒑}𝑨H

for 𝑘θ = 1, 2, · · · , 𝐾θ

for 𝑘v = 1, 2, · · · , 𝐾v

𝑠𝑘θ𝑘v𝑘r =
𝒂H

(
𝜃𝑘θ

,𝑣̃𝑘v

)
𝑹−1𝒃𝑘r

𝒂H
(
𝜃𝑘θ

,𝑣̃𝑘v

)
𝑹−1𝒂

(
𝜃𝑘θ

,𝑣̃𝑘v

)
𝑝𝑘θ𝑘v =

��𝑠𝑘θ𝑘v𝑘r
��2

end

end

until convergence

Output
𝒔𝑘r =

[
𝑠11𝑘r , · · · , 𝑠1𝐾v𝑘r , · · · , 𝑠𝐾θ1𝑘r , · · · , 𝑠𝐾θ𝐾v𝑘r

]T

𝒑 =
[
𝑝11, · · · , 𝑝1𝐾v , · · · , 𝑝𝐾θ1, · · · , 𝑝𝐾θ𝐾v

]T

represents the echo signal of a single point target, whereas
the actual raw data contains the superposition of signals
reflected from multiple targets. When there are totally 𝐾 point
targets in the range-Doppler-angle region of interest, the three-
dimensional (3-D) data model in the presence of additive noise
can be expressed as

𝑑𝑛𝑝𝑞 ≈
𝐾∑︁
𝑘=1

𝛼𝑘𝑒
− 𝑗2𝜋𝑦𝑛

sin(𝜃𝑘 )
𝜆 𝑒− 𝑗2𝜋𝛽

2𝑟𝑘
𝑐

(𝑞−1)Δ𝑇s

×
𝑀∑︁
𝑚=1

𝑐𝑚𝑝𝑒
− 𝑗2𝜋𝑥𝑚

sin(𝜃𝑘 )
𝜆 𝑒− 𝑗2𝜋

2𝑣𝑘
𝜆

(𝑝−1)𝑇PRI

+ 𝛾𝑛𝑝𝑞 , (13)

where 𝛾𝑛𝑝𝑞 denotes the white Gaussian noise. The data set[
𝑑𝑛𝑝𝑞

]
is a tensor of order 3 denoted by D. A data transmission

technology called low-voltage differential signaling (LVDS) is
used to export such 3-D raw data to a host computer. The noisy
measurement tensor D can be used for the 3-D range-Doppler-
angle imaging.

III. Range-Doppler-Angle Imaging
As described by (12), for an ST-CDM MIMO radar, the

signals from the 𝑀 transmit channels are superimposed together
at each receive channel due to the simultaneous waveform
transmissions. It is no longer feasible to use the conventional
MF for waveform separation. Also, some algorithms that rely
on the sample covariance matrix, such as the well-known
MUSIC algorithm [32] [33], cannot be used with just a single
snapshot, especially since spatial smoothing is impossible for
SLAs. In this section, we present the ST-IAA algorithm, which
is an extended version of IAA [15]–[17], to simultaneously
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Fig. 3. Our proposed data processing flow in which the angle and velocity of targets are estimated by the ST-IAA algorithm.

address both the issue of high Doppler sidelobes arising from
waveform separation residuals and the challenge of elevated
angular sidelobes introduced by SLAs. ST-IAA can be used to
generate Doppler-angle images with both high resolution and
low sidelobes for the ST-CDM MIMO radar with SLAs.

After capturing data D, to obtain the range profiles of targets
with low computational complexities, we firstly perform range
compression along the fast-time domain (i.e., within each chirp
period) through windowed FFT. The range region of interest is
discretized uniformly into 𝐾r grids. Denote the result of range
compression as B and one of its elements can be calculated as

𝑏𝑛𝑝𝑘r =

𝑄∑︁
𝑞=1

𝑤𝑞𝑑𝑛𝑝𝑞𝑒
𝑗2𝜋𝛽

2𝑟̃𝑘r
𝑐

(𝑞−1)Δ𝑇s , 𝑘r = 1, · · · , 𝐾r,(14)

where {𝑤𝑞}𝑄𝑞=1 denote the window function used for range com-
pression to reduce the sidelobe levels in the range dimension and
{𝑟𝑘r }

𝐾r
𝑘r=1 represent the range bins. After that, the range-Doppler-

angle imaging problem can be simplified to the Doppler-angle
imaging problem for each range bin.

We assume that there are 𝐾 ′ targets, which is less than or
equal to 𝐾 in (13), at a given range bin 𝑘𝑟 . Then (14) can be
written as

𝑏𝑛𝑝𝑘r ≈
𝐾 ′∑︁
𝑘=1

𝛼′𝑘𝑒
− 𝑗2𝜋𝑦𝑛

sin(𝜃𝑘 )
𝜆

𝑀∑︁
𝑚=1

𝑐𝑚𝑝𝑒
− 𝑗2𝜋𝑥𝑚

sin(𝜃𝑘 )
𝜆

× 𝑒− 𝑗2𝜋
2𝑣𝑘
𝜆

(𝑝−1)𝑇PRI + 𝛾𝑛𝑝𝑘r , (15)

where 𝛼′
𝑘

represents the complex-valued amplitude of the 𝑘-th
target in the slow-time and angular domain. Denote the 𝑘r-th
cross section of B as 𝑩𝑘r , which is an 𝑁 × 𝑃 matrix. Note that
all those elements 𝑏𝑛𝑝𝑘r , where 𝑛 = 1, · · · , 𝑁 and 𝑝 = 1, · · · , 𝑃,
are used to make up 𝑩𝑘r , which can be expressed compactly as
follows

𝑩𝑘r =

𝐾 ′∑︁
𝑘=1

𝛼′𝑘𝒂R (𝜃𝑘)
{[
𝑪T𝒂T (𝜃𝑘)

]
⊙ 𝒂D (𝑣𝑘)

}T + 𝚪𝑘r , (16)

where 𝑪 is an 𝑀 × 𝑃 slow-time coding matrix whose (𝑚, 𝑝)-
th element is 𝑐𝑚𝑝; 𝚪𝑘r denotes the additive noise matrix;
𝒂T (𝜃), 𝒂R (𝜃) and 𝒂D (𝑣), respectively, denote the transmit,
receive and nominal temporal steering vectors with the following
expressions

𝒂T (𝜃) =
[
1, · · · , 𝑒− 𝑗2𝜋𝑥𝑀 sin(𝜃 )/𝜆

]T
∈ C𝑀 , (17)

𝒂R (𝜃) =
[
1, · · · , 𝑒− 𝑗2𝜋𝑦𝑁 sin(𝜃 )/𝜆

]T
∈ C𝑁 , (18)

and

𝒂D (𝑣) =
[
1, · · · , 𝑒− 𝑗4𝜋𝑣 (𝑃−1)𝑇PRI/𝜆

]T
∈ C𝑃 . (19)

We intend to obtain the 2D Doppler-angle image 𝑺𝑘r at a given
range bin 𝑘r from 𝑩𝑘r . Discretize the Doppler-angle region of
interest into𝐾θ×𝐾v grid points uniformly, which are represented
as {𝜃𝑘θ }

𝐾θ

𝑘θ=1 and {𝑣̃𝑘v }
𝐾v
𝑘v=1. Ensure 𝐾θ ≫ 𝑀 × 𝑁 and 𝐾v ≫ 𝑃,

usually 5-10 times larger, so that the mesh grids are fine enough.
We have 𝑺𝑘r ∈ C𝐾θ×𝐾v . Then we can formulate (16), at least
approximately, using the following linear model

𝒃𝑘r = 𝑨𝒔𝑘r + 𝜸𝑘r , (20)

where 𝒃𝑘r , 𝒔𝑘r and 𝜸𝑘r are the vectorizations of 𝑩𝑘r , 𝑺𝑘r and 𝚪𝑘r ,
respectively. And the steering matrix 𝑨 can be written as

𝑨 =
[
𝒂
(
𝜃1, 𝑣̃1

)
, · · · , 𝒂

(
𝜃1, 𝑣̃𝐾v

)
, · · ·

, 𝒂
(
𝜃𝐾θ

, 𝑣̃1
)
, · · · , 𝒂

(
𝜃𝐾θ

, 𝑣̃𝐾v

) ]
, (21)

where 𝒂 (𝜃, 𝑣) is expressed as

𝒂
(
𝜃𝑘θ , 𝑣̃𝑘v

)
= 𝒂R

(
𝜃𝑘θ

)
⊗
{[
𝑪T𝒂T

(
𝜃𝑘θ

) ]
⊙ 𝒂D

(
𝑣̃𝑘v

)}
. (22)

The ST-IAA algorithm can be used to estimate 𝒔𝑘r from
the noisy measurements 𝒃𝑘r . The algorithm flow of ST-IAA
is summarized in Table II. The ST-IAA algorithm initializes 𝒔𝑘r

and the power vector 𝒑 using the conventional MF method at the
beginning. Then, ST-IAA iteratively updates 𝒔𝑘r and 𝒑. During
each iteration, the ST-IAA covariance matrix 𝑹 is calculated
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Fig. 4. Imaging results of the five targets: (a)(b)(c) The conventional MF; (d)(e)(f) The ST-IAA algorithm; (g)(h)(i) SLIM; (j)(k)(l) LIKES; (m)(n)(o) SPICE.
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with the diagonalization of 𝒑, which forms a diagonal matrix
with 𝒑 on the diagonal, i.e.,

𝑹 = 𝑨diag{ 𝒑}𝑨H. (23)

Then the formula below is used to update 𝒔𝑘r ,

𝑠𝑘θ𝑘v𝑘r =
𝒂H (

𝜃𝑘θ , 𝑣̃𝑘v

)
𝑹−1𝒃𝑘r

𝒂H (
𝜃𝑘θ , 𝑣̃𝑘v

)
𝑹−1𝒂

(
𝜃𝑘θ , 𝑣̃𝑘v

) . (24)

Note that if 𝑹 is equal to the identity matrix 𝑰, (24) becomes
the conventional MF method. Also, ST-IAA does not require the
prior knowledge about the target number𝐾 ′ since it is a nonpara-
metric approach. Through the iterations described in Table II, we
can generate the high-resolution Doppler-angle image 𝑺𝑘r from
𝑩𝑘r with both the problems of waveform separation residuals
and high angular sidelobes of SLAs mitigated. The processing
flow of the captured raw data D is summarized in Fig. 3. Once
the Doppler-angle images are generated for all range bins, we
finally obtain the 3-D range-Doppler-angle image S containing
the information about the range, radial velocity and angle of all
targets.

IV. Numerical Examples
In this section, we evaluate the performance of the ST-IAA

algorithm using numerical examples. For the ST-CDM MIMO
radar with SLAs, this evaluation primarily comprises two
aspects. On the one hand, this involves confirming whether ST-
IAA can be used to effectively suppress the Doppler sidelobes
caused by waveform separation residuals. On the other hand, it
aims to verify whether ST-IAA can be used to reduce the angular
sidelobe levels of SLAs while taking full advantage of their high
angular resolution capabilities.

To achieve goals above in simulations, we set up five ideal
point targets with different parameters, as listed in Table III.
Among them, the first three targets have different velocities and
intensities, while the last two targets have an angular difference
of 2°. In addition, we simulate an ST-CDM LFMCW MIMO
radar system with 𝑀 = 3 transmit antennas and 𝑁 = 4 receive
antennas. The antenna arrangement follows the position vectors
of the 3 × 4 SLA given in (42) of Appendix A. All transmit
channels emit chirps synchronously, the number of which in a
CPI is 𝑃 = 384. Therefore, the size of the slow-time random
binary code matrix 𝑪 is 3 × 384. The ADC component of each
receive channel extracts 𝑄 = 128 samples along the fast-time
(i.e., each chirp period). As a result, the captured data for a
single snapshot D has 4 × 384 × 128 elements.

We also provide a set of practical waveform parameters for
simulations. Specifically, the carrier frequency is 𝑓c = 77 GHz
and the PRI is 𝑇PRI = 22 μs. Then the maximum unambiguous
detectable velocity is calculated as follows

𝑣max =
𝑐

4 𝑓c𝑇PRI
≈ 44.27 m/s. (25)

In addition, the chirp slope is 𝛽 = 15 MHz/μs and the sampling
rate is 𝑓s = 20 MSPS. Considering the fact that the sampling
rate is twice the bandwidth of the IF signal, we use the formula
below to calculate the maximum detectable range

𝑟max =
𝑓s𝑐

4𝛽
= 100 m. (26)

TABLE III
Parameters of Targets

𝑘 1 2 3 4 5

Range (m) 90 90 90 50 50

Velocity (m/s) −20 −5 15 20 20

Angle (deg) −20 −20 −20 29 31

Intensity 1 0.1 1 1 1
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Fig. 5. The normalized root-mean-square errors (NRMSE) for the target
intensities estimated by ST-IAA, SLIM, LIKES and SPICE.

TABLE IV
Iteration Number and Computation Time

ST-IAA SLIM LIKES SPICE

Iteration Number 7 7 15 30

Computation Time (s) 66.1 25.7 145.2 268.6

We first present the imaging result of the conventional MF
method to visually demonstrate the presence of waveform
separation residuals, as shown in Figs. 4(a)–(c). The process of
waveform separation and imaging in the MF method is relatively
straightforward. Specifically, let 𝒄𝑚 represent the 𝑚-th row of
the code matrix 𝑪, i.e.,

𝑪 =
[
𝒄T

1 , 𝒄
T
2 , · · · , 𝒄

T
𝑚, · · · , 𝒄T

𝑀

]T
. (27)

Then 𝑩𝑘r diag{𝒄𝑚}, 𝑚 = 1, · · · , 𝑀 , is the separated signal cor-
responding to the transmitted signal from the 𝑚-th transmitter,
as well as any residuals due to the other transmitted signals.
Define G as the three-dimensional data stacking all of these 𝑀
matrices. Similarly, let 𝑮𝑘r denote the 𝑘r-th cross section of G.
The matrix 𝑮𝑘r can be denoted as

𝑮𝑘r =
[
diag{𝒄1}𝑩T

𝑘r
, · · · , diag{𝒄𝑀 }𝑩T

𝑘r

]T
, (28)

from which we can see that 𝑮𝑘r has 𝑀𝑁 rows and 𝑃 columns.
Then, the MF method utilizes a straightforward FFT in the slow-
time domain of G to obtain the range-Doppler image shown in
Fig. 4(a). As depicted in Fig. 4(b), the target with the lowest
intensity, i.e., the 2nd target, is masked by the high waveform
separation residuals of the other stronger targets. Furthermore,
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(a) (b)

Fig. 6. The minimum angle separation of two corner reflectors that can be resolved using different antenna arrangements on the ST-CDM radar prototype: (a)
about 5.6◦ when using the 3 × 4 ULA; (b) about 2.8◦ when using the 3 × 4 SLA.

due to the sparse array on the radar, the nonuniform FFT [34] is
employed to obtain the angular information of targets, as shown
in Fig. 4(c). It can be observed that the conventional MF method
is entirely unsuitable for the ST-CDM radar with SLAs.

(d)–(f) present the imaging results for the ST-IAA algorithm.
As depicted in Fig. 4(e), in contrast to the conventional MF
method, ST-IAA clearly reveals the 2nd target with the weakest
intensity without encountering the issue of high Doppler
sidelobes caused by waveform separation residuals. Also, as
shown in Fig. 4(f), ST-IAA operates effectively on the sparse
array and achieves superior angular resolution compared to
the Rayleigh resolution of the 3 × 4 SLA in (42). Based on
the steering matrix in (21) constructed for the ST-CDM signal
model, we explore the application of several other well-known
hyperparameter-free estimation algorithms, such as SPICE [23]
[24], LIKES [25], and SLIM [26].

The imaging results of the ST-CDM radar with the 3×4 SLA
using SLIM, LIKES, and SPICE are shown in Figs. 4(g)–(o).
Like the ST-IAA algorithm, they can also effectively address
the issues suffered by the conventional MF method, and obtain
accurate estimates of target velocities and angles. However, the
estimation accuracy for the target intensities vary considerably
among these four algorithms. Fig. 5 shows the normalized root-
mean-square errors (NRMSE) for their target intensity estimates
under different signal-to-noise ratios (SNR). The formula used
to calculate NRMSE is given by

NRMSE =

√√√√√
1
𝑅𝐾

𝑅∑︁
𝑟=1

𝐾∑︁
𝑘=1

���𝛼̂ (𝑟 )
𝑘

− 𝛼𝑘
���2

𝛼2
𝑘

, (29)

where 𝛼̂ (𝑟 )
𝑘

represents the intensity estimate of the 𝑘-th target
obtained in the 𝑟-th Monte Carlo simulation. It is evident in
Fig. 5 that ST-IAA demonstrates superior estimation accuracy
compared to the other algorithms.

We also provide the number of iterations and the computation
time required for convergence of these hyperparameter-free
algorithms in Table IV. Under the ST-CDM signal model, ST-
IAA and SLIM not only exhibit superior estimation accuracy
compared to LIKES and SPICE, but also have much faster
computation speed than the latter two. Furthermore, although
ST-IAA is not as fast as SLIM in terms of computation speed, the

former holds a significant advantage in estimation accuracy and
robustness. The robustness advantage of ST-IAA in handling
real ST-CDM radar data will be demonstrated in experiments of
the next section.

V. Experimental Measurements and Imaging Results
The experiments consist of two parts, indoor stationary

testing and outdoor road testing. The former is conducted by
using corner reflectors as static targets to preliminarily evaluate
the advantages of using SLAs on the ST-CDM radar and
the robustness of the ST-IAA algorithm. The latter is a set
of comparative experiments conducted on a provincial road,
aiming to highlight the advantages of using ST-IAA for 3-D
imaging with the ST-CDM radar equipped with the 3 × 4 SLA
in practical applications. The experimental methodologies and
imaging results for these two categories of tests are described in
detail in the following two subsections.

A. Indoor Stationary Testing
We use two categories of antenna arrangements on our ST-

CDM radar prototype: the 3 × 4 ULA given in (34) and the
3 × 4 SLA given in (42). Two corner reflectors are placed in
front of the radar to ensure that they are equidistant from the
radar. The angular difference between those two corner reflectors
is determined by both the distance between them and their
distance to the radar. Throughout the testing, we maintain a
fixed radar position while gradually changing the positions of
the corner reflectors. We start with a large angular separation
and gradually decrease the angular difference between those two
corner reflectors. As the ST-IAA algorithm can achieve super
resolution, the 3×4 ULA can still be used to distinguish those two
corner reflectors even when the angular difference is less than its
Rayleigh angular resolution of 8.5◦. We gradually decrease the
angular difference, and those two peaks in the angular spectrum
are almost merging together when the angular difference reaches
to about 5.6◦, as shown in Fig. 6(a) and the blue line in Fig. 7(g).
This indicates that the 3×4 ULA can only distinguish two targets
with a minimum angular difference of approximately 5.6◦ when
using the ST-IAA algorithm.

Next we use the 3 × 4 SLA to repeat the testing. We further
decrease the spacing between the two corner reflectors while
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Fig. 7. The ST-CDM radar with the 3 × 4 ULA: (a) the imaging result of MF; (c) ST-IAA; (e) SLIM; (g) the angular spectra generated by ST-IAA and SLIM. The
ST-CDM radar with the 3 × 4 SLA: (b) MF; (d) ST-IAA; (f) SLIM; (h) the angular spectra of ST-IAA and SLIM.
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increasing the distance between the corner reflectors and the
radar. Due to the space limitations of our indoor laboratory, the
minimum angular difference between the two corner reflectors
that can be achieved in our laboratory is approximately 2.8◦. The
3×4 SLA can easily distinguish those two corner reflectors with
the assistance of ST-IAA. The experimental scenario and the
corresponding angular spectrum are illustrated in Fig. 6(b) and
the blue line in Fig. 7(h). Moreover, although Fig. 13 indicates
that the sidelobe level of the 3 × 4 SLA is much higher than
that of the 3 × 4 ULA, ST-IAA can reduce the sidelobe level of
the former’s angular spectrum to be comparable to the latter. It
can also be observed from Figs. 7(a)(b) and 7(c)(d) that ST-IAA
can significantly suppress the Doppler sidelobes arising from
the waveform separation residuals suffered by the conventional
MF method.

In addition, to demonstrate the robustness of the ST-IAA
algorithm, we present the imaging results of SLIM, which
has lower estimation accuracy and shorter computation time
compared to the former. As shown in Figs. 7(e)(f), like the
ST-IAA algorithm, SLIM can also address the problem of
waveform separation residuals. However, SLIM fails to provide
high quality angular spectra for practical antenna arrays. As
illustrated by the red lines in Figs. 7(g)(h), compared to ST-
IAA, SLIM obviously lacks accuracy in estimating the angles
and intensities of targets. In summary, ST-IAA stands out
as the optimal choice for the ST-CDM radar imaging. The
performance of the ST-CDM radar with the 3 × 4 SLA in a
highly dynamic environment is demonstrated by the outdoor
experiments discussed in the following subsection.

B. Outdoor Road Testing
The outdoor testing was carried out on a provincial road.

The complex environments help highlight the advantages of the
ST-CDM radar equipped with the SLA and the robustness of
the ST-IAA algorithm. Fig. 8(a) shows the experimental setup,
which includes three radars and one camera. As indicated by
the red arrow in Fig. 8(b), the three radars are positioned at the
junction of the road to observe the vehicles ahead concurrently.
They are configured with different parameters listed in Table V
for the sake of comparison. And the camera records videos for
subsequent viewing and analysis.

First, let us discuss the common features of these three radars.
The parameters of the 1st radar is similar to those of the
simulated ST-CDM radar, i.e., 𝑟max = 100 m. In addition, the
range resolution is

𝑟res =
𝑐

2𝛽𝑇c
= 0.56 m. (30)

And the velocity resolution can be calculated as follows:

𝑣res =
𝑐/ 𝑓c

2𝑃𝑇PRI
= 0.23 m/s. (31)

According to the parameters provided by Table V along with
the formulas (26), (30) and (31), 𝑟max, 𝑟res and 𝑣res are also the
same for the other two radars to ensure the consistency of the
basic performance.

There are two main differences among the three radars (see
Table V). One is that the antenna arrays of the 3rd radar (ULAs)

(a) (b)

Fig. 8. (a) The three radars used in the outdoor experiments. (b) The illustration
of the road junction and the placement of radars.

TABLE V
The parameters of three radars

Identifier 1 2 3

Scheme ST-CDM TDM TDM
Array 3 × 4 SLA 3 × 4 SLA 3 × 4 ULA
𝑓c (GHz) 77 77 77
𝑇c (μs) 18 18 18

𝛽 (MHz/μs) 15 15 15
𝑇PRI (μs) 22 66 66
𝑓s (MSPS) 20 20 20

𝑄 128 128 128
𝑃 384 128 128

are different from those of the 1st and 2nd radars (SLAs).
And the other one is that the transmission schemes of the 1st
radar (ST-CDM) is different from those of the 2nd and 3rd
radars (TDM). For the former difference, we expect to show
the advantages of SLAs over ULAs with the same number of
antennas. For the latter difference, we intend to demonstrate
that the ST-CDM transmission scheme can achieve greater
maximum unambiguous detectable velocity than TDM with
the same frame length (i.e., CPI). The frame length, as the
name suggests, is the duration of a LFMCW frame, defined as
𝑃𝑇PRI. Note that using the same frame length ensures the same
velocity resolution as described in (31). According to (25), the
maximum unambiguous detectable velocity of the 1st radar is
𝑣max = 44.27 m/s, whereas that of the 2nd and 3rd radar is only
𝑣max = 44.27

3 m/s = 14.76 m/s.
We first consider an experimental scenario in which two cars

are approaching the radars from a distance at slightly different
speeds, and there is a truck traveling in the same direction at a
closer distance, as shown in Fig. 9(a). Figs. 9(b)(c) present the
imaging results of the 1st radar using the ST-IAA algorithm.
Although the two cars are very close to each other, they can be
easily distinguished in the Doppler dimension due to the their
speed difference and the high velocity resolution in (31). As a
comparison between the unambiguous Doppler ranges of ST-
CDM and TDM, the imaging results of the 2nd and 3rd radars
are shown in Figs. 9(d)–(g). It can be observed that the radial
velocity of car-2 slightly exceeds the unambiguous Doppler
ranges of these two TDM radars, resulting in the detection
of car-2’s motion status as moving away. The 1st radar, i.e.,
the ST-CDM radar, with its much larger unambiguous Doppler
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Fig. 9. (a) The first experimental scenario with a truck approaching at close distance and two cars traveling at slightly different speeds at a distance. (b)(c) The
imaging results of the 1st radar; (d)(e) the 2nd radar; (f)(g) the 3rd radar.
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Fig. 10. (a) The second experimental scenario with two approaching cars side by side at the same speed. (b)(c) The imaging results of the 1st radar; (d)(e) the 2nd
radar; (f)(g) the 3rd radar.
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Fig. 11. The range-Doppler images of the 1st radar generated by the conventional MF method: (a) the first scenario; (b) the second scenario.

range, can significantly reduce the probability of such errors,
which is crucial for highly dynamic environments. From this,
the advantage of the ST-CDM radar over its TDM counterpart
is demonstrated.

The second scenario we consider is shown in Fig. 10(a),
where two cars approach the radars side by side at the same
speed of about 13 m/s and the same range of about 55 m while
the distance between them is approximately 2 m. So, none of the
three radars can distinguish these two cars in both the range and
Doppler dimensions, as shown in Figs. 10(b)(d)(f). Considering
the width of the cars, the angular difference arising from the
transverse gap between those two cars is approximately 2◦. With
this condition, the 3rd radar with the 3×4 ULA has no capability
to distinguish those two cars as shown in Fig. 10(g). In contrast,
the 2nd radar with the 3 × 4 SLA is able to distinguish them as
shown in Fig. 10(e). At the same time, as shown in Fig. 10(c),
the 1st radar with the 3 × 4 SLA working in the ST-CDM mode
can also distinguish them, which verifies the high performance
and stability of our ST-IAA algorithm when using SLAs. It’s
noteworthy that this angular resolution of approximately 2° is
achieved using only 3 transmit and 4 receive channels from a
single AWR2243 chip, approaching the angular resolution of
the TI four-chip cascaded radar [27].

We also use the conventional MF method to process the data
from the 1st radar working in the ST-CDM mode, as shown
in Figs. 11(a)(b). The presence of multiple horizontal ridges in
the range-Doppler image is attributed to waveform separation
residuals, which can reduce the dynamic range of the ST-CDM
radar and negatively impact the detection of targets with weak
reflections. In comparison, the corresponding imaging results
of ST-IAA shown in Fig. 9(b) and Fig. 10(b) is free from those
ridges so that all moving targets can be detected easily. Thus
the excellent capability of the ST-IAA algorithm to suppress
waveform separation residuals and angular sidelobes, leading to
high quality radar imaging, is verified experimentally using the
ST-CDM MIMO radar prototype equipped with the 3 × 4 SLA
we designed.

VI. Conclusion
The ST-CDM MIMO radar has the advantages of concen-

trated energy radiation, absence of virtual array distortion,
and large maximum unambiguous detectable velocity. We have
shown that the ST-IAA algorithm can be used to mitigate the
problem of waveform separation residuals in the ST-CDM radar,
which hinders its widespread deployment. Moreover, using
SLAs can significantly enhance the angular resolution of a
single-chip ST-CDM MIMO radar sensor but suffers from high
angular sidelobe problems. We have shown that ST-IAA can
also be used to significantly reduce the high angular sidelobes of
SLAs. We provide both numerical and experimental examples to
showcase the outstanding performance of the ST-CDM MIMO
radar with SLAs when using the ST-IAA algorithm. For the
experiments, we construct an ST-CDM MIMO radar prototype
with a 3×4 SLA we designed. The mechanisms of this prototype
can be used to form a single-chip radar sensor with an angular
resolution close to that of the TI four-chip cascaded radar.
Through indoor stationary testing and outdoor road testing, the
superior imaging performance of the ST-CDM MIMO radar
equipped with the 3 × 4 SLA using the ST-IAA algorithm is
demonstrated.

Appendix A
Sparse Linear Array Design

A typical single-chip radar sensor is equipped with only 3
transmit and 4 receive antennas, as discussed in Section I. Our
goal is to design a 3 × 4 SLA to improve the angular resolution
of a single-chip radar sensor. Fig. 12(a) shows the experimental
platform, which is a multi-chip radar module. The relative
positions of 12 transmit antennas and 16 receive antennas on
the radar board are depicted in Fig. 12(b). With the MIMO
framework, this 12 × 16 array can generate up to 192 virtual
elements, including 134 non-overlapping virtual elements, as
illustrated in Fig. 12(c). Among the numerous virtual elements,
a total of 86 elements are arranged in a straight line with half-
wavelength spacing, forming an aperture of 42.5𝜆, as depicted in
the bottom row of Fig. 12(c). These uniformly spaced elements
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Fig. 12. (a) The TI cascade imaging radar module. (b) The relative positions of transmit and receive antennas. (c) The MIMO virtual array.

provide favorable conditions for us to select 12 elements to form
a 3× 4 SLA. The selected 3× 4 SLA can be used by single-chip
radar sensors.

First of all, we utilize the array steering vector to define the
normalized beam pattern that characterizes array performance.
The steering vectors of the transmit and receive arrays are
already given by (17) and (18) in Section II. Then the steering
vector of the virtual array can be written as

𝒂V (𝜃) =
[
1, · · · , 𝑒− 𝑗2𝜋𝑧𝐿 sin(𝜃 )/𝜆

]T

= 𝒂T (𝜃) ⊗ 𝒂R (𝜃) , (32)

where the position of the 𝑙-th virtual element is 𝑧𝑙 = 𝑥𝑚 + 𝑦𝑛.
The number of virtual array elements is 𝐿 = 𝑀 ×𝑁 , which may
include some overlapping elements. The normalized array beam
pattern is defined as

Φ (𝜃) =
��𝒂𝑇V (𝜃) 𝒘

��

𝒂V (𝜃)


2 =

1
𝐿

����� 𝐿∑︁
𝑙=1

𝑒− 𝑗2𝜋𝑧𝑙 sin(𝜃 )/𝜆

����� , (33)

where 𝜃 belongs to [−90◦, 90◦], and the weight vector 𝒘 =

[1, 1, · · · , 1]𝑇 , which means that the mainlobe of the normalized
array beam pattern is oriented in the normal direction of the
array, i.e., 𝜃0 = 0°.

We take a typical 3×4 ULA as an example to visually illustrate
the normalized beam pattern. The position vectors of the 3 × 4
ULA are given as

𝒙 = [0, 2𝜆, 4𝜆] , (34a)
𝒚 = [0, 0.5𝜆, 1𝜆, 1.5𝜆] . (34b)

corresponding to the 1st, 2nd, and 3rd transmit antennas, as well
as the 1st, 2nd, 3rd, and 4th receive antennas in Fig. 12(b). And
the positions of virtual elements can be calculated as

𝒛 = [0, 0.5𝜆, 1𝜆, 1.5𝜆, 2𝜆, 2.5𝜆, 3𝜆,
3.5𝜆, 4𝜆, 4.5𝜆, 5𝜆, 5.5𝜆] . (35)

These 12 uniformly spaced elements, each separated by one half
of a wavelength, correspond to the first 12 virtual elements in
the bottom row of Fig. 12(c). The array aperture 𝐷 is composed
of the transmit array aperture 𝐷T and the receive array aperture
𝐷R. 𝐷T represents the distance between the first and the last
transmit antennas, i.e., 𝐷T = 𝑥3 − 𝑥1 = 4𝜆. By the same token,
we can deduce 𝐷R = 𝑦4 − 𝑦1 = 1.5𝜆. So the virtual aperture

of the 3 × 4 ULA is 𝐷 = 𝐷T + 𝐷R = 4𝜆 + 1.5𝜆 = 5.5𝜆, which
exactly represents the spacing between the first and the last
virtual elements. The normalized array beam pattern is shown
in Fig. 13 by the red line. The 3-dB beamwidth of the mainlobe,
also known as the Rayleigh angular resolution, is approximately
8.5°. And as expected, the peak sidelobe level is about −13 dB.
By increasing the spacing between the virtual elements, we can
expand the array aperture, effectively enhancing the Rayleigh
angular resolution limit. A MIMO array with non-uniform
spacing of these virtual elements is referred to as an 𝑀 × 𝑁

SLA. However, increasing the aperture size may lead to side
effects, such as elevated sidelobe levels. Below, we utilize the
intrinsic properties of the normalized array beam pattern to
explain this.

Let 𝜉 = sin (𝜃), which belongs to [−1, 1]. Then the beam
pattern in (33) can be expressed as

Φ (𝜉) = 1
𝐿

����� 𝐿∑︁
𝑙=1

𝑒− 𝑗2𝜋𝑧𝑙 𝜉/𝜆

����� . (36)

Now we evaluate the integral of the square of Φ (𝜉):

∫ 1

−1
Φ2 (𝜉) 𝑑𝜉 = 1

𝐿2

∫ 1

−1

����� 𝐿∑︁
𝑙=1

𝑒− 𝑗2𝜋𝑧𝑙 𝜉/𝜆

�����2 d𝜉

=
1
𝐿2

∫ 1

−1


[
𝐿∑︁
𝑙=1

cos
(
2𝜋
𝑧𝑙

𝜆
𝜉

)]2

+
[
𝐿∑︁
𝑙=1

sin
(
2𝜋
𝑧𝑙

𝜆
𝜉

)]2 d𝜉

=
2
𝐿
+ 1
𝐿2

∑︁
𝑙≠𝑙′

∫ 1

−1

[
cos

(
2𝜋
𝑧𝑙

𝜆
𝜉

)
cos

(
2𝜋
𝑧𝑙′

𝜆
𝜉

)
+ sin

(
2𝜋
𝑧𝑙

𝜆
𝜉

)
sin

(
2𝜋
𝑧𝑙′

𝜆
𝜉

)]
d𝜉

=
2
𝐿
+ 1
𝐿2

∑︁
𝑙≠𝑙′

∫ 1

−1
cos

[
2𝜋
𝜆

(𝑧𝑙 − 𝑧𝑙′ ) 𝜉
]

d𝜉. (37)

We assume that all the inter-element spacings in the array are
integer multiples of half-wavelength, as depicted in Fig. 12.
Therefore, we have 𝑧𝑙 − 𝑧𝑙′ = 𝑖𝜆/2, where 𝑖 = 0,±1,±2, · · · is
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an integer. If there are overlapping virtual array elements, i.e.,
there exists 𝑙 ≠ 𝑙′ such that 𝑧𝑙 = 𝑧𝑙′ , we have∫ 1

−1
cos

[
2𝜋
𝜆

(𝑧𝑙 − 𝑧𝑙′ ) 𝜉
]

d𝜉 = 2. (38)

For other non-overlapping virtual elements, i.e., 𝑧𝑙 − 𝑧𝑙′ is an
non-zero integer multiple of 𝜆/2, we have∫ 1

−1
cos

[
2𝜋
𝜆

(𝑧𝑙 − 𝑧𝑙′ ) 𝜉
]

d𝜉 =
𝜆 sin

[ 2𝜋
𝜆

(𝑧𝑙 − 𝑧𝑙′ )
]

𝜋 (𝑧𝑙 − 𝑧𝑙′ )
.

= 0 (39)

Therefore, (37) can be expressed as∫ 1

−1
Φ2 (𝜉) d𝜉 ≥ 2

𝐿
, (40)

where the equality holds when there are no overlapping virtual
array elements. In other words, the integral of the square of
the normalized array beam pattern reaches its minimum value
when the virtual elements do not overlap, and this minimum
value is inversely proportional to the number of virtual elements.
Reduction in the number of antennas, an increase in the number
of overlapping virtual elements, and enlargement of the array
aperture are all factors that may lead to a higher sidelobe
level. Based on this principle, we introduce below a simple
and effective array design strategy.

Our first step is to determine an appropriate array aperture
size, which should be a positive integer multiple of 𝜆/2. For an
𝑀 × 𝑁 MIMO array, this means determining the positions of
the 2 receive antennas at the edges of the receive array and the 2
transmit antennas at the edges of the transmit array. We partition
the apertures of both the receive and transmit arrays into grid
points with 𝜆/2 spacing, and subsequently place the remaining
𝑀 − 2 transmit and 𝑁 − 2 receive antennas on these equidistant
grid points. This ensures that all the inter-element spacings are
integer multiples of 𝜆/2. Then we search exhaustively for all
possible MIMO arrays without overlapping virtual elements,
and select the one with the lowest sidelobe level. As long as the
achieved Rayleigh angular resolution meets our requirements,
we choose the array with the lowest sidelobe level as the
design outcome. Otherwise, it is necessary to further enlarge
the aperture and repeat the above steps.

Based on the above strategy, we proceed to select a 3×4 SLA
from the radar board shown in Fig. 12(b). We choose the 9th
and 16th receive antennas as the edges of the receive array, i.e.,
the receive array aperture is 𝐷R = 3.5𝜆. And we select the 1st
and 12th transmit antennas as the edges of the transmit array,
i.e., the transmit array aperture is 𝐷T = 16𝜆. So the MIMO
array aperture is 𝐷V = 𝐷T + 𝐷R = 19.5𝜆. There are 6 elements
between the 9th and 16th receive antennas, while there are 10
elements between the 1st and 12th transmit antennas. Since the
elevation angle estimation is not considered in this paper, the
4th, 5th and 6th transmit antennas can be ignored. To form the
3 × 4 SLA, we need to select 2 out of these 6 receive antennas
and 1 out of the 10 − 3 = 7 transmit antennas. Then the number
of combinations is (

7
1

)
×
(
6
2

)
= 105. (41)
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Fig. 13. The normalized beam patterns of different arrays

From the combinations without overlapping virtual elements, we
select the one with the lowest sidelobe level, which comprises the
1st, 7th and 12th transmit antennas along with the 9th, 10th, 12th
and 16th receive antennas in Fig. 12(b). The position vectors of
this 3 × 4 SLA are listed below:

𝒙 = [0, 6𝜆, 16𝜆] (42a)
𝒚 = [0, 0.5𝜆, 1.5𝜆, 3.5𝜆] (42b)

and the corresponding beam pattern is shown in Fig. 13 by
the blue line. The Rayleigh angular resolution of this array
is about 2.1◦ and the sidelobe level is about −6 dB. By
using the IAA type of super-resolution algorithms, the angular
resolution of this array can be improved beyond the Rayleigh
resolution. In practical situations, factors such as antenna
fabrication tolerances and non-ideal signal models can affect
the achievable angular resolution, which may deviate from the
ideal performance and requires empirical testing. We employ
the 3 × 4 SLA in (42) to develop the ST-CDM MIMO radar
prototype.
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