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Key Points: 12 

 The transformer-encoder-based model precisely classifies volcanic earthquakes, matching 13 

or exceeding traditional methods. 14 

 After training data screening, attention weights in the model focused on seismic 15 

waveform features similar to typical human analysis. 16 

 A clear distinction in the waveform features via new criteria for data labeling is essential 17 

to boost the model’s interpretability.   18 
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Abstract 19 

Precisely classifying earthquake types is crucial for elucidating the relationship between volcanic 20 

earthquakes and volcanic activity. However, traditional methods rely on subjective human 21 

judgment, which requires considerable time and effort. To improve this, we developed a deep 22 

learning model using a transformer encoder for a more objective and efficient classification. 23 

Tested on Mount Asama's diverse seismic activity, our model achieved high F1 scores (0.876 for 24 

tectonic, 0.964 for low-frequency earthquakes, and 0.995 for noise), equivalent to or better than 25 

other methods. According to the attention weight visualization, our model focuses on critical 26 

seismic signal features for classification, similar to expert analysis. However, it has been 27 

demonstrated that removing subjective elements and employing standardized labeling of the 28 

training data based on waveform features are necessary to enhance the interpretability of the 29 

model. Additionally, the analyses suggest that stations near the volcanic crater are essential for a 30 

highly interpretative and accurate classification. 31 

Plain Language Summary 32 

Volcanoes can cause several small earthquakes, particularly prior to eruptions. Unlike regular 33 

earthquakes caused by the movement of the Earth's plates, these are linked to volcanic activity. 34 

Knowing the differences between these earthquake types is critical for predicting eruptions, but it 35 

is usually a complex task that takes considerable time for experts. To simplify this process, we 36 

created a computer program that learns from data to identify earthquakes more easily. We tested 37 

it on earthquakes from a volcano in Japan, and it worked very well, even better than the other 38 

methods. The program examines earthquake data and identifies key features to classify them, 39 

similar to experts. However, it is crucial to ensure that the data used for training the program are 40 

labeled appropriately. In addition, for best results, data from monitoring stations very close to the 41 

volcano's crater should be used. 42 

 43 

1 Introduction 44 

Active earthquake swarms are frequently associated with volcanic activity in volcanic 45 

regions. Monitoring these earthquakes is crucial for assessing current volcanic activities and 46 

providing insights into the physical processes of volcanic fluids, such as magma and 47 

hydrothermal fluids (Chouet et al., 1988; McNutt, 1996; Nishimura & Iguchi, 2011). Minakami 48 

et al. (1970) proposed that volcanic earthquakes could be classified into four types based on 49 

waveform characteristics, source location, and their relationship with surface activity: A-type 50 

(tectonic earthquakes), B-type (low-frequency earthquakes), volcanic tremors, and explosion 51 

earthquakes. Although the frequency of these four types of earthquakes varies by volcano and 52 

may be further subdivided or include other types, a typical pattern before eruptions begin is an 53 

increase in A-type earthquakes, followed by an increase in B-type earthquakes and volcanic 54 

tremors (Oikawa et al., 2006; Iguchi, 2013). However, the relationship between these 55 

earthquakes and their eruptions remains unclear. The precise classification of earthquake types is 56 

crucial for elucidating the relationship between volcanic earthquakes and volcanic activity. 57 

Traditional methods classify volcanic earthquakes based on visual observations of the 58 

seismic wave amplitude, dominant frequency, duration, and related surface activity evaluated by 59 

experts, which are time-consuming and costly for human resources. In addition, the classification 60 

criteria may need to be standardized across observers and institutions.  61 
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Several deep learning models have been proposed for automatic volcanic earthquake 62 

classification, including support vector machines (Malfante et al., 2018) and convolutional neural 63 

networks (CNN) (Titos et al., 2018). CNN studies employed two-dimensional time-frequency 64 

representation data as inputs (Canário et al., 2020; Lara et al., 2021; Nakano et al., 2022).  65 

Deep learning has significantly improved the accuracy of earthquake-type classification 66 

and reduced human and time costs; however, the opacity of the classification rationale has been 67 

highlighted. To mitigate the adverse effects of the black-box nature of deep learning, 68 

eXplainable AI (XAI) technologies have been developed to make the reasoning behind decisions 69 

and predictions made using deep learning understandable to humans and applicable in Earth 70 

sciences (Mohammadi et al., 2023). Therefore, we constructed a model using a transformer 71 

encoder and visualized attention weights to verify whether the process it follows for classifying 72 

volcanic earthquakes is similar to that of experts or if it possesses unique criteria for 73 

classification.  74 

2 Methods 75 

A classification model was constructed using only the encoder component of the 76 

transformer architecture (Vaswani et al., 2017). A vital feature of the transformer is its attention 77 

mechanism, which enables the calculation of relevance among all tokens (the smallest unit of 78 

data) within the input sequence. Furthermore, visualizing attention weights (AW) potentially 79 

reveal the decision-making rationale and serve a function in XAI. The encoder employs a self-80 

attention mechanism that calculates the representation of each input position by considering its 81 

relationship with every other position in the sequence. To illustrate, given an input sequence 82 

𝑋 = [𝑥1, 𝑥2, … 𝑥𝑛], for any element 𝑥𝑖 in this sequence, the associated weight matrices create 83 

vectors known as queries (𝑄), keys (𝐾), and values (𝑉). The model computes the similarity 84 

scores between the position of 𝑥𝑖 and every other position 𝑥𝑗 in the sequence, using the dot 85 

product of 𝑄 and 𝐾. These scores are typically normalized by the scaling factor √𝑑𝑘, where 𝑑𝑘 86 

represents the dimensionality of 𝐾, ensuring that the values do not excessively increase. A 87 

softmax function is applied to these normalized scores to calculate the AW, highlighting the 88 

importance of the attention that each token should receive relative to the others. Tokens with 89 

similar Q and K pairs receive higher AW. These AW are then applied to V to produce the final 90 

output vector as follows: 91 

 92 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                                   (1) 93 

 94 

to construct a classification model for volcanic earthquakes (Figure 1). The model 95 

embeds inputs of three-component seismic waveforms through convolution and positional 96 

embedding and then processes them through three layers of the transformer encoder, outputting 97 

probabilities for A- and B-type events and noise through a linear transformation of the 98 

classification token. Specifically, waveform data with a sequence length of 3000 as an array with 99 

three channels and a one-dimensional convolution layer that converted a 50-frame with a 3-100 

channel array into a 150-channel array were applied with a stride of 10. 101 

 102 
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 103 

Figure 1. The network architecture. CLS represents the classification token, E represents 104 

embedding, T indicates the sequence encoded by the transformer encoder, the subscripts denote 105 

sequence numbers (1, 2, …, L), and Linear indicates a linear layer. The model embeds inputs of 106 

three-component seismic waveforms through convolution and positional embedding, then 107 

processes them through three layers of transformer encoders. A linear transformation of the 108 

classification token outputs probabilities for A- and B-type earthquakes and noise. Within the 109 

transformer encoder, each sublayer (Self-Attention layer and Feedforward Network) is followed 110 

by a normalization layer, with residual connections added between the input and output. 111 

 112 

Transformers are adept at capturing long-term features but require assistance with short-113 

term features (Gulati et al., 2020). Convolutional layers were used to embed the inputs to 114 

compensate for this weakness. Convolutional layers apply a filter to the input data to create 115 

feature maps, enabling dimension reduction and extraction of local features. 116 

Relative positional embedding was employed because absolute positional information 117 

was not necessary to classify the waveform data (Huang et al., 2018). Relative positional 118 

embedding utilizes an algorithm called Skew to create the matrix 𝑆𝑟𝑒𝑙 and adjust 𝑄𝐾𝑇. 119 

Specifically, a dummy column vector of length N is padded after the rightmost column of the 120 

sequence, the matrix is flattened, and then a dummy row of length N-1 is padded before 121 

reshaping the matrix to size (𝑁 + 1, 2𝑁 − 1). This matrix was sliced to retain only the first 𝑁 122 

rows and the last 𝑁 columns, resulting in an 𝑁 × 𝑁 matrix. With relative positional embedding, 123 

Equation (1) was as follows:  124 

 125 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇+𝑆𝑟𝑒𝑙

√𝑑𝑘
) 𝑉                                    (2) 126 

 127 

When performing classification with a transformer, adding a single data point for 128 

classification (classification token) at the beginning of the input embedding is common. The 129 

classification token was then extracted from the results encoded by the transformer encoder, and 130 

a linear transformation was performed to calculate the output probabilities for each type. Various 131 

methods exist for computing the classification tokens, such as random initialization or 132 

calculations from the mean of the outputs. We adopted an averaging approach across temporal 133 

dimensions. 134 



manuscript submitted to Geophysical Research Letters 

 

Training was conducted with 100 iterations using a mini-batch size of 200, and a 135 

multiclass cross-entropy error was employed as the loss function. Considering several parameters 136 

in the transformer, which pose a risk of overfitting, the AdamW optimizer, Adam with weight 137 

decay, was used for optimization. The learning rate was set to 0.001, and the weight decay to 138 

0.01. 139 

 140 

3 Data 141 

To validate the model mentioned above, earthquakes occurring at Mount Asama, where 142 

various low-frequency earthquakes are frequently observed, were selected for the analysis 143 

(Figure 2a). Mount Asama, an active andesitic volcano in central Japan, has witnessed most of its 144 

historical eruptions at its summit crater, with a diameter of approximately 400 m. Details of the 145 

historical volcanic activity were comprehensively described by Oikawa et al. (2006) and Takeo 146 

et al. (2022). Seismic observations have been conducted on Mount Asama for more than 100 147 

years. Since the establishment of a modern observation network around the volcano in 2003, a 148 

network consisting of 30 seismometers, including 19 with broadband sensors, has been installed 149 

by institutions such as the Earthquake Research Institute (ERI), Japan Meteorological Agency 150 

(JMA), and National Research Institute for Earth Science and Disaster Resilience (NIED) 151 

(Figure 2a) up to 2017. 152 

Volcanic earthquakes on Mount Asama have been classified based on their source 153 

locations and waveform characteristics (Minakami et al., 1970). Recent observations and 154 

research have identified several types of volcanic earthquakes on Mount Asama: B-type 155 

earthquakes located directly beneath the crater; A-type earthquakes situated slightly westward 156 

and more profoundly than the B-type distribution area; F-type earthquakes occurring on the 157 

flanks of the volcano away from the crater; and N-type earthquakes occurring within the B-type 158 

source area but characterized by decaying oscillatory waveforms (Oikawa et al., 2006). These are 159 

currently subdivided into 12 types. Among these, B-type earthquakes are the most frequent and 160 

tend to cluster, often preceding eruptions (Oikawa et al., 2006). Therefore, the precise 161 

identification of B-type earthquakes is crucial for understanding the seismic and volcanic activity 162 

of Mount Asama. 163 
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 164 
Figure 2. Distribution of earthquakes and stations and examples of input data. Earthquakes 165 

detected between January 2003 and October 2022, only with location determination errors less 166 

than 100 m in horizontal and depth directions, were plotted. (a) Distribution of earthquakes 167 

(circles) and stations (blue triangles) at Mount Asama. Red circles represent A-type, green 168 

circles represent B-type labeled events, and open circles represent earthquakes that do not belong 169 

to either type. The top image is a map view, and the bottom image is a cross-sectional view along 170 

the red line in the map view. Height is positive in the depth direction. (b) An example of an A-171 

type earthquake. The top panel shows the seismic waveform, and the bottom image shows the 172 

spectrogram. (c) Same as b) but representing an example of a B-type earthquake.  173 



manuscript submitted to Geophysical Research Letters 

 

Waveforms and spectrograms of A- and B-type earthquakes are shown in Figure 2b and 174 

2c, respectively. A-type earthquakes have distinct P- and S-waves, whereas B-type earthquakes 175 

often have unclear P-wave onsets and indistinguishable S-waves. B-type earthquakes tend to 176 

have longer durations and lower dominant frequencies than type A earthquakes. Therefore, this 177 

study aimed to classify A- and B-type earthquakes and differentiate them from noise. We used a 178 

seismic catalog developed by the ERI Asama Volcano Observatory to construct the classification 179 

model between January 2003 and October 2022. The earthquake types in this catalog were 180 

manually classified based on visual inspection of waveforms. Figure 2a shows only those with 181 

horizontal and depth source errors within 100 m for 900 A-and 3191 B-type earthquakes. 182 

However, because the model training did not utilize information on the hypocenter locations, all 183 

detected earthquakes, including those with relatively large location errors, were used, totaling 184 

1027 A-type earthquakes (8,318 waveforms) and 4090 B-type earthquakes (37,196 waveforms). 185 

The onsets of the P- and S-wave arrival times for these earthquakes were manually selected. 186 

Each dataset consisted of three channels (two horizontal and one vertical), and we decimated the 187 

waveforms of stations recorded at 200 Hz such that the sampling frequency of all waveforms 188 

was 100 Hz. Each waveform was initially extracted from a segment of 9001 points. For A- and 189 

B-type earthquakes, the starting point was randomly selected from 150 to 1000 points after the P-190 

wave arrival time, and 3000 points were extracted for use. Noise data were obtained from areas 191 

with no earthquake signals. 192 

 193 

4 Results 194 

4.1. Model’s performance 195 

By incorporating 112,852 noise waveforms of the A- and B-type earthquakes previously 196 

described, 80% of the data were used for training and the remainder for validation to assess the 197 

model’s performance. The model’s training curve is shown in Figure S1. The model’s 198 

performance was compared to that of a model consisting of four layers of CNN and two fully 199 

connected layers (Figure S2), as used by Nakano et al. 2022 (Table 1).  200 

 201 

Table 1. Comparison of the performance of individual models 202 

 203 

Model This Study CNN
a
 Under sampling

b
 

BACC 0.944 0.938 0.923 

Event Type A B Noise A B Noise A B Noise 

Precision 0.881 0.961 0.996 0.809 0.969 0.991 0.883 0.913 0.973 

Recall 0.871 0.966 0.996 0.877 0.940 0.996 0.915 0.876 0.978 

F1 score 0.876 0.964 0.995 0.842 0.955 0.993 0.899 0.894 0.976 
 

204 

The CNN model was created using the method described by Nakano et al. (2022). 205 
b
 Models trained with the architecture developed in this study with the lowest number of training 206 

data. 207 

 208 

The evaluation metrics calculated were the Balanced Accuracy (BACC), Precision, 209 

Recall, and F1-score, as expressed by the following equations: 210 
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 211 

 𝐵𝐴𝐶𝐶:  
𝑇𝑃

𝑇𝑃+𝐹𝑁
+

𝑇𝑁

𝑇𝑁+𝐹𝑃

2
                                                      (3) 212 

 213 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛:  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                               (4) 214 

 215 

𝑅𝑒𝑐𝑎𝑙𝑙:  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                               (5) 216 

 217 

 𝐹1 𝑆𝑐𝑜𝑟𝑒:  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                              (6) 218 

 219 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 represent true positives, true negatives, false positives, and false 220 

negatives, respectively. Compared to traditional methods, the classification performance 221 

evidently surpassed that of the other methods in all aspects, except for the recall of A-type and 222 

noise and the precision of B-type earthquakes (Table 1). The recognition accuracy for the A-type 223 

was lower than that for the B-type for both methods, likely owing to the smaller amount of 224 

training data available for the A-type. To address the imbalanced data issue, undersampling was 225 

performed to match the number of labels with the smallest dataset. Although undersampling 226 

slightly increased the A-type score, the overall performance decreased significantly (Table 1). 227 

Therefore, increasing the amount of data, even if imbalanced, can reduce the false negatives and 228 

positives, contributing to an overall improvement in model performance. Furthermore, because 229 

transformers have a scaling rule that improves their performance with increased data volume 230 

(Kaplan et al., 2020), increasing the amount of A-type data can lead to further improvements. 231 

 232 

4.2. Model’s Interpretability 233 

Similar to the creation of many volcanic earthquake catalogs, the classification of 234 

earthquake types at Mount Asama is performed visually by humans based on the clarity of the P- 235 

and S-wave onsets and hypocenter depth. However, the decision-making process of deep 236 

learning models is generally considered a "black-box," making it difficult to discern the criteria 237 

used for their decisions. We attempted to visualize the decision-making criteria of our model by 238 

utilizing the AW calculated within the model. 239 

 240 
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 241 

Figure 3. Prediction results of validation data. (a) An example where high AW is focused on the 242 

seismic signal. The upper figure shows a waveform classified as an A-type earthquake, and the 243 

lower figure shows one classified as a B-type earthquake. AW are normalized between 0 and 1.0. 244 

(b) Examples of dispersed AW. The upper figure shows a waveform classified as an A-type 245 

earthquake, and the lower figure shows one classified as a B-type earthquake. AW are 246 

normalized between 0 and 1.0. (c) The number of earthquakes relative to AWR. (d) Examples of 247 

inappropriate training data. The upper figure shows multiple earthquakes in a single dataset, and 248 

the lower figure shows a large non-earthquake signal. The white and black dotted lines in the 249 

waveforms represent the onset of P- and S-waves selected by experts, respectively. 250 

 251 

We explored a method for directly visualizing the AW by averaging across the heads in 252 

the final layer and using only the AW related to the classification token. The visualization results 253 

showed that AW tended to concentrate mainly on the earthquake signal (Figure 3a). This 254 

suggests that our model focuses on features of seismic waveforms, such as how humans classify 255 

earthquakes. However, many cases were observed in which the AW was dispersed across the 256 

entire waveform despite high confidence in the classification (Figure 3b). 257 

We extracted the AW for 0.1 s before and 5 s after the P-wave to investigate the specific 258 

types of waveforms where AW was concentrated or dispersed. We compared this with the AW 259 

from the start of the waveform to 1 s before the P-wave. This ratio is called the attention weight 260 

ratio (AWR). The visualization showed that many values were concentrated at approximately 1, 261 

indicating the dispersion of AW (Figure 3c). When considering the details of the data with an 262 

AWR below 1.2, some data contained multiple earthquakes, non-earthquake signals, inaccurate 263 

detection of P- and S-waves, and/or typical A-type earthquakes with prominent P- and S-waves 264 

labeled as B-type (Figures 3d and S2).  265 



manuscript submitted to Geophysical Research Letters 

 

5 Discussions 266 

The quality of training data, which hinders effective learning, is presumed to be a 267 

significant reason for the divergence in attention weights. Generally, B-type earthquakes are 268 

characterized by indistinct P- and S-waves. However, for Mount Asama, shallow earthquakes 269 

can be classified as B-type, regardless of their waveform characteristics. Therefore, we retrained 270 

the model by removing the data with S-wave detection from a B-type earthquake. The BACC 271 

was 0.943, and although there was no significant change, the AWR increased significantly 272 

(Figure 4a and 4b).  273 

Regarding BACC, because the number of training data for the B-type decreased significantly to 274 

27,405, we investigated the impact of substantially reducing the B-type training data. Training 275 

with a randomly sampled dataset from the entire B-type earthquake data to match the volume of 276 

data without detected S-waves resulted in a lower BACC of 0.920. The details of the 277 

performance comparisons are presented in Table S1. Therefore, S-waves in B-type earthquake 278 

data may act as noise in the learning process. However, we do not assert that earthquakes 279 

classified as B-type, which have waveforms similar to those of A-type earthquakes, are 280 

mislabeled simply because of their waveform similarity. Experts classified these earthquakes as 281 

B-type because of their features, which are distinct from those of other A-type earthquakes, such 282 

as extremely shallow epicenters. In our model, they were treated as noise because their 283 

characteristics differed from those of other B-type earthquakes, meaning that they could 284 

potentially be classified as either A-type or B-type, but approximately in between, or as a 285 

completely different type of earthquake. When comparing the spectra of the three types of 286 

earthquakes, the B-type with S-wave detection tended to have more prominent high frequencies 287 

compared to the B-type without S-wave detection, yet appeared to be more dominated by low 288 

frequencies than the A-type (Figure 4c). To clarify these distinctions, scrutinizing the waveforms 289 

and employing unsupervised learning techniques, such as clustering, to extract the distinct 290 

features of each earthquake type is essential. 291 

After excluding the above data and apparently erroneous data, as shown in Figure 3d, 292 

events with low AWR were still observed (Figure 4b). A slight tendency for a higher AWR at 293 

shorter source-receiver distances was observed (Figure 4d). As many earthquakes occur beneath 294 

the crater, stations near the crater inevitably record more events. Therefore, we compared the 295 

proportion of data with a low AWR (<1.2) to the total data from all stations against the distance 296 

from the crater and found that the proportion of low AWR values increased with distance from 297 

the crater. Furthermore, by overlaying the distribution of all the data from each station with the 298 

distribution of data from sites with a prediction probability of over 99%, these distributions 299 

matched. Therefore, using stations near the crater is vital for enhancing both classification 300 

performance and interpretability (Figure 4e). This trend remained unchanged even after 301 

removing the waveforms of events with large location errors (Figure S3). 302 

In this study, the model was specifically applied to data from Mount Asama. Applying 303 

this model to other volcanic regions presents several challenges. For instance, the model learns 304 

not only the characteristics of the seismic source but also incorporates features from the 305 

geological structure and the source-receiver distance. To adapt this model to other regions, it 306 

may be necessary to retrain it using data specific to the target volcano or to implement transfer 307 

learning techniques. Furthermore, as transformer models require extensive training data, 308 

maintaining high performance necessitates a dataset of size comparable to or greater than what 309 
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was used in this study. If sufficient data cannot be prepared for the target volcano, data 310 

augmentation using seismic data from other volcanoes or synthetic data might be necessary. 311 

 312 

Figure 4. Evaluations using a model trained by excluding events with S-wave detection from B-313 

type training data. (a) The same data is shown in Figure 3(b). (b) Number of earthquakes relative 314 

to AWR. (c) Comparison of spectra for A-type (magenta), B-type with S-wave detection (green), 315 

and B-type without S-wave detection (blue) recorded at KAE station (Lat: 36.407 Lon: 138.523, 316 

Figure 2a). Thin solid lines represent individual spectra, whereas thick solid lines indicate 317 

respective average values. (d) The source-receiver distance relative to AWR. (e) Histograms of 318 

distances from the crater (Lat.: 36.4, Lon.: 138.52) to each station, showing all test data (red) 319 

and data with AWR less than 1.2 (blue). The total data is normalized to sum up to one. (f) The 320 

horizontal axis and the red histogram are the same as in (e). Blue represents the data histogram 321 
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with a prediction probability value of over 99%. The total number of data is normalized to sum 322 

up to one. 323 

6 Conclusions 324 

In this study, we developed a volcanic earthquake classification model using a 325 

transformer encoder, demonstrating high performance comparable to or surpassing that of 326 

conventional methods. Data augmentation may mitigate this issue in the future using earthquakes 327 

from other regions. Interpretability using AW revealed that our model focused on waveform 328 

features, such as how humans classify earthquakes, although it did not elucidate any unique 329 

criteria beyond that.  330 

AWR validation highlighted the importance of data near the crater in constructing a 331 

highly precise and interpretable model. Therefore, high-quality and consistent training data are 332 

required to enhance interpretability. Historically, earthquakes on Mount Asama have been 333 

classified by humans, but these classifications may be influenced by subjective biases or region-334 

specific rules. However, this does not mean the labeling is incorrect; it may indicate a lack of 335 

data consistency for our model, which learns waveform patterns. Whether the earthquakes we 336 

excluded from the B-type accurately share equivalency with the A-type needs to be confirmed 337 

through waveform scrutiny and methods such as clustering to extract features of each earthquake 338 

type. Establishing new classification criteria can enable the application of deep learning 339 

classification models across various volcanoes. Additionally, the detection of new earthquake 340 

types can deepen our understanding of the relationship between earthquakes and volcanic 341 

activity. 342 
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