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Introduction  

This supplementary information provides further context to the calibration of the WHAM-

INFERNO model ensemble presented in the main text. Specifically, it describes the set-up of 

the perturbed parameter ensembles used to define model free parameters and how these 

parameter values relate to results presented in the main text. It then briefly describes the 

setup of a baseline model used to benchmark performance of WHAM-INFERNO, before 

showing how free parameters vary across parameter spaces. 

Text S1. 

1. Definition of perturbed parameter ensemble 

Four categories of model parameter were included in the perturbed ensemble. These are 

firstly parameters whose values were defined heuristically in the first version of INFERNO 

(Mangeon et al., 2016). These comprise the burned area per fire for each plant functional 

type in the model (seven parameters; Table SI1). Burned area for cropland PFTs was set to 0, 

as WHAM! represents anthropogenic cropland burning. The second set of parameters 

included were those that were required to integrate WHAM! with JULES-INFERNO either 

structurally or ontologically. These are the 𝛷 parameter for accounting for differences in 

conceptualisation of anthropogenic ignitions (INFERNO) vs anthropogenic fires (WHAM!) 

and parameters accounting for previous fires within a given calendar year (α, β).  

Thirdly, parameters are included for aspects of WHAM! for which no initial external 

verification was possible, as presented in Perkins et al., (2023). For example, whilst 

assessment of WHAM! crop residue burning outputs was possible with the new GFED5 crop 

fires algorithm (Hall et al., 2023), assessment of managed pasture fires and managed 

vegetation fires (comprising crop field preparation, hunting and gathering, pyrome 

management and vegetation clearance) was not possible with currently available remote 

sensing data products or other data sources. As such, two free parameters were added 

reflecting the unexplored uncertainty in these WHAM outputs. No free parameter was added 

to the rate of escaped fires (Main text, section 2.2.1) because the rate of escaped fires is 

implicitly changed with the rate of managed burned area and altering both processes would 

have led to implausibly high rates of escaped fire in some model parameter sets. Other 

WHAM! outputs to which free parameters were applied were the rates of background and 

arson fires, as well as fire suppression.   
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Fourthly, and finally, free parameters were included in the perturbed parameter ensemble 

relevant to representations of landscape fragmentations described in the main text. These 

are a scaling parameter for the impact of road density in reducing fire size (ρ) and for the 

impact of logging in increasing flammability of tropical forests (Λ). 

 

2. Setup of the perturbed parameter ensembles 

2.1 Defining and sampling parameter distributions 

Having defined the variables to be included in the perturbed parameter ensembles, 

probability distributions for their values were defined. Given the large degree of uncertainty 

surrounding initial values for parameters, these were set as uniform distributions with upper 

and lower bounds +- 50% of the initial value. Where possible, parameter values were taken 

from previously defined estimates – as such parameter values for burned area per fire per 

PFT were taken from Burton et al., (2019). Whilst in the INFERNO baseline model, initial 

parameter values for anthropogenic and lightning ignitions were those given in Mangeon et 

al. (2016). Furthermore, WHAM! parameters for fire suppression could be defined on a 

narrower range than other parameter values, as the impact of limited and moderate fire 

suppression must ontologically be less than that of intensive fire suppression (see Perkins et 

al., 2023 for details). Similarly, it was not logically consistent for the role of logging to reduce 

flammability of tropical forests, and hence values <1 were excluded. Elsewhere, parameters 

for WHAM! were defined heuristically. For example, the initial value of the road density 

scaling parameter (𝜌) was the global maximum of its own natural logarithm; whilst the initial 

value of the fire-ignitions scaling parameter (𝛷) was defined from the reciprocal of the 

global mean flammability in JULES-INFERNO. 

Having defined sampling distributions for model parameters, a Latin Hypercube sampling 

strategy was taken using a minmax sampling design (Carnell 2022). Such a sampling design 

allows for robust exploration of the model parameter space in a computationally efficient 

way (Florian, 1992). 10,000 parameter sets were defined for WHAM-INFERNO and INFERNO 

offline, and model runs were conducted for each parameter set.  
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2.2 Assessing model outputs from the perturbed ensemble 

Model outputs were assessed in two ways. Firstly, a process of history matching was 

conducted to remove implausible parameter sets from consideration. Secondly, a pareto-

optimal parameter space was defined, which then became the basis of analysis presented in 

the main text.  

2.2.1 History matching for implausibility assessment  

History matching is the process of constraining the parameter space of a model using 

observations (Craig et al., 1997). A common method of constraining model parameter spaces 

is to ‘rule out’ implausible parameter combinations which result in model outputs that are 

inconsistent with observations (Williamson et al., 2013). Parameter sets that satisfy the 

implausibility criteria are deemed ‘not yet ruled out’, whilst in the event an implausibility 

assessment returns a null parameter space, the model is assessed to be structurally 

unsuitable (Williamson et al., 2015). Model implausibility, the measure used to rule out 

parameter sets, is denoted as I and is calculated as: 

      𝐼 = |
𝑦𝑚𝑜𝑑 −𝑦𝑜𝑏𝑠

√(𝜎𝑚𝑜𝑑
2 + 𝜎𝑜𝑏𝑠

2)
|         (𝑆1) 

where 𝑦𝑚𝑜𝑑and 𝑦𝑜𝑏𝑠 are the model outputs and observations respectively; and 𝜎𝑚𝑜𝑑 and 𝜎𝑜𝑏𝑠 

are the model and observational error, respectively. Applying the 𝐼 calculation on a pixel-by-

pixel basis requires complicated assessment of spatial and temporal autocorrelations, given 

the non-independence of observations and model outputs (Rougier and Beven, 2013). 

Furthermore, the goal of implausibility assessment here is not to optimise model parameter 

values, but rather to provide an initial filtering of parameter space. Therefore, the mean 

global burned area across 2001-2014 is used as the basis of the implausibility calculation.  

As such, observational error can be measured directly and here has a value of 106.72 – the 

product of the mean annual burned area in the GFED5 product (802.5Mha) and the Dice 

similarity coefficient of Sentinel-2 burned area observations (0.133). The Dice similarity 

coefficient (also known as the F1-Score) is used as a measure of true positive detection 

accuracy in image processing (Lin et al., 2020). The resulting value (106.72Mha) is a 

conservative estimate of observational error: GFED5, against which model evaluation was 

conducted, does not use Sentinel-2 burned area directly, but rather scales MODIS burned 

area observations to Sentinel-2 and Landsat outputs using empirical relationships (Chen et 
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al., 2023). Given this, the GFED5 product does not report observational error directly, and so 

the underlying Sentinel-2 error is used (Roteta et al., 2019).  

Model error, also referred to as structural error, is used to define acceptable divergence from 

observations, and therefore must be set by the modeller in relation to the domain and 

research question (Kennedy & O’Hagan 2001; McNeall et al., 2016). Here, we adopt the error 

in the ensemble of models from the first Fire Model Intercomparison Project (FIREMIP; 

Teckentrup et al., 2019) – specifically the median disagreement between the mean burned 

area of the model ensemble and the three remote sensing products used for evaluation – 

68.33Mha. The median was chosen to down-weight outlier outputs from the FIREMIP 

ensemble. The result was a denominator value for (6.9) of 126.72 - i.e. √(68.332 + 106.722). 

Adopting a commonly-used and theoretically-robust threshold (Pukelsheim, 1994), 

parameter sets that produced an I value greater than 3 (equivalent to +-380.2Mha) were 

taken as implausible, with remaining parameter combinations taken as not ruled out yet 

(NROY). 

2.2.2 Defining a pareto optimal parameter space 

From the set of parameters ‘not ruled-out yet’ by the implausibility assessment (hereafter 

NROY), the pareto optimal parameter set was defined. Intuitively, pareto optimality refers to 

a trade-off space between multiple criteria in which one criteria cannot be further increased 

without reducing performance of another (Gupta et al., 1998). Or, more formally, a parameter 

space in which alternative sets are all ‘non-dominated’ against a set of objective functions 

(Lu et al., 2011). A parameter set 𝑥1 ∈ 𝑋 is considered to dominate another parameter set 

𝑥2 ∈ 𝑋 if for a vector of objective functions 𝑦⃗ of length 𝐿: 

∀𝑖 ∈ {1, 2 … 𝐿} 

𝑦𝑖(𝑥1) ≥  𝑦𝑖(𝑥2)  (𝑆2) 

Hence in a pareto parameter space, no parameter sets would satisfy the inequality in (𝑆2).  

Here, the two criteria chosen for assessing model performance were those used in the recent 

FIREMIP: global burned area and Pearson’s r (Teckentrup et al., 2019). The global burned 

area metric used was simply the difference in Mha between WHAM!-INFERNO outputs and 

GFED5 global burned area (802.5Mha). For Pearson’s r, as in Teckentrup et al., (2019), a 

square root transformation was applied to both GFED5 burned area and WHAM!-INFERNO 

outputs before calculating correlations. Therefore, model outputs for NROY parameter sets 
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outside of the pareto parameter space contained more disagreement with observations (as 

measured by either global burned area or their pixel-based correlation) than those within the 

pareto parameter space.  

 

2.2.3 Understanding the pareto optimal parameter space 

In order to understand how model parameters were contributing to defining the pareto 

parameter spaces, Kruskall-Wallis tests were used to assess which parameters differed 

significantly across NROY and pareto optimal parameter sets. Significant differences were set 

as those with p-values <0.0025: 0.05 with a Bonferroni correction applied to reflecting 

multiple testing across 20 parameters. Furthermore, to understand if there were parameters 

with small impacts on global burned area, but nonetheless meaningful impacts in capturing 

observed patterns of fire, correlations between parameter values and the correlation of 

outputs with GFED5 were calculated, and divided by the correlation of parameter values to 

the amplitude of global burned area:  

𝑐𝑜𝑟_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑖 =
𝑐𝑜𝑟_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑖

𝑐𝑜𝑟_𝐵𝐴𝑖
   (𝑆3) 

where 𝑐𝑜𝑟_𝐵𝐴𝑖is the correlation coefficient between the values of parameter i and the 

amplitude of burned area in model outputs; 𝑐𝑜𝑟_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑖 is the correlation coefficient of 

the values of parameter i and the model correlation with GFED5, and 𝑐𝑜𝑟_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑖 is a 

measure of how far a given parameter impacts model performance relative to its overall 

impact on model outputs. This ensured that identification of the role of model parameters in 

defining the pareto parameter space was not merely an exercise in understanding sensitivity 

of the model structure, but also which processes may be most pertinent to capturing the 

distribution of global fire regimes.  
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2.3 Setup and evaluation of INFERNO baseline model 

INFERNO v1.0 (Mangeon et al., 2016) calculates burned area as: 

      𝐵𝐴𝐼𝑁𝐹𝐸𝑅𝑁𝑂 = 𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ∗ 𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝐵𝐴̂𝑃𝐹𝑇  (𝑆4) 

Therefore, flammability and burned area per PFT (𝐵𝐴̂𝑃𝐹𝑇) were taken from the same sources 

as WHAM-INFERNO (Main text; Table 1). As in the WHAM-INFERNO integration, lightning 

ignitions were calculated following Mangeon et al., (2016) as:  

                𝐼𝐿 = 7.7 × 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 × (1 − 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)                             (𝑆5) 

where 𝐼𝐿is the number of ignitions from lightning strikes in a given model timestep, 

𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 is the number of lightning strikes and 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is a population density 

dependent suppression function. Similarly, as in Mangeon et al., (2016), anthropogenic 

ignitions and suppression were calculated respectively as: 

               𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝐴 = (6.8 ∗ 𝑃𝐷−0.6) ∗ (0.03 ∗ 𝑃𝐷)                                 (𝑆6) 

        𝑆𝑢𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 1 − 7.7 ∗ (0.05 + 0.9 ∗ 𝑒−0.05∗𝑃𝐷)                             (𝑆7) 

where 𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝐴are anthropogenic ignitions, and PD is population density. Two scaling 

factors {6.8, 7.7} in these equations were first defined by Pechony and Shindell (2009) to 

calibrate population density with observed fire counts in GFED v4. Therefore, these were 

replaced by free parameters to enable recalibration with the new GFED5 (Table S2).     

As in WHAM-INFERNO, equations in the main text (7) and (8) were used to account for prior 

fires restricting the connectivity and availability of vegetation. Outputs from the baseline 

model were analysed in the same way to the WHAM-INFERNO ensemble – firstly by ruling 

out implausible parameter combinations, and secondly by defining a pareto optimal 

parameter space. The performance of the baseline model(s) and the two versions of WHAM-

INFERNO in this pareto space was then compared.  

The parameters in the perturbed ensemble for the baseline version of INFERNO – INFERNO 

v1.0 recalibrated to GFED5 – were as follows (Table S2). Parameters from the WHAM-

INFERNO ensemble that related to uncertain aspects of WHAM! outputs and vegetation 

fragmentation were removed. These were replaced with two additional parameters, which 

allowed recalibration of INFERNO fire counts to GFED5 (𝜎1, 𝜆, 𝑆𝑢𝑝). The original values of 

these parameters were derived from calibrating lightning strikes and human population 
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density to fire counts observed in GFED v4. As such, with much greater capacity to detect 

anthropogenic fires in GFED5, these each need recalibration. Further, as WHAM! crop fires 

did not contribute to the baseline model, burned area parameters per PFT were reintroduced 

for cropland PFTs.  

 

3. Characteristics of parameter spaces in the perturbed parameter 

ensembles 

Based-on Wilcox tests between pareto and other parameter sets, across the three model 

setups there are five parameters with significantly different values in the pareto sets (Figure 

S1). For both WHAM-INFERNO and WHAM-EO, road density shows a strong difference, with 

pareto parameter sets (mean = 6.00, 6.51) showing lower values than other sets (mean = 9). 

This has the effect of lowering the threshold at which road density effects apply, and hence 

increasing its constraint on burned area. Similarly, values for the scaling parameter that 

corrects for the double counting of flammability effects in the model ensemble are weighted 

towards the upper end of the parameter range in the perturbed ensemble (Figure S1). 

Overall, this suggests that increasing the impact of climate (through vegetation flammability) 

and vegetation fragmentation (through road density) are important in defining the pareto 

parameter spaces for the two coupled models.  

However, when individual parameter correlations with overall WHAM!-GFED5 correlation are 

calculated and weighted by their respective impact on burned area, a more complex picture 

emerges (Figure S2). Weighted by impact on overall burned area, for logging, suppression, 

shrub PFT burned area per fire, and previous fires have the most impact on correlations 

between WI-JULES, WHAM-EO and GFED5. By contrast, road density and the rate of 

unmanaged fires, which have a large impact on burned area, have correspondingly less 

weighted impact on correlations. Therefore, some aspects of the coupled model ensemble 

have a small impact on overall burned area, but nevertheless pick up meaningful aspects of 

the burned area record in GFED5.  
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Figure S1: Comparison of parameter distributions across models and parameter tranches. 

Distributions shown had Wilcox tests with p<0.05 (Bonferroni correction applied). Under 

WHAM coupling, road density is important in constraining the distribution of fire in, but this 

effect is not captured in the baseline model (INFERNO_baseline).   
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Figure S2: Effect of model parameters on model correlation with GFED5 across 

NROY & pareto runs for a) WI-EO and b) WI-JULES. Whilst they have limited impact 

on global burned area parameters for logging, suppression, shrub PFT burned area 

per fire, and previous fires are effective at capturing the relative spatio-temporal 

distribution of fire. By contrast, in WI-JULES, pasture PFTs prove useful in capturing 

the distribution of fire in GFED5, but this effect is not present in WI-EO.  

 

Key: cor.BA – correlation (r) of parameter with global burned area; cor.cor – 

correlation of parameter values with overall model correlation; cor.weight – 

correlation of parameter values with overall correlation, weighted by parameter 

impact on burned area. 

  

a) 
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Table S1: Model free parameters, their initial, maximum and minimum values in WHAM!-

INFERNO calibration. There is no mean burned area for cropland PFTs as it was 0 in all cases, 

and replaced by outputs from WHAM! Given the substantial uncertainty around parameter 

values, values were sampled from a uniform distribution around an initial value. Grass and 

pasture burned area per PFT were given two values for C3 and C4 respectively. 

 

Parameter name Parameter function Initial value 
 

Minimum 
value 

Maximum 
value 

TreeBL_BA 
Mean global BA for 
broadleaf trees 

1.7 0.85 2.55 

TreeNL_BA 
Mean global BA for 
needleleaf trees 

1.7 0.85 2.55 

Grass_BA 
Mean global BA for grass 
PFTs (C3 & C4) 

3.2 1.6 4.8 

Shrub_BA 
Mean global BA for 
shrubs 

3.2 1.6 4.8 

Pasture_BA 
Mean global BA for 
pasture PFTs (C3 & C4) 

2.7 1.35 4.05 

δ1 
Scaling managed burned 
area from pasture fires 

1 0.5 1.5 

δ2 
Scaling managed burned 
area from vegetation fires 

1 0.5 1.5 

𝜎1 
Rate of background 
ignitions 

0.03 0.01 0.05 

𝜎2 Scaling arson fires 30 15 45 

𝜆 
Scaling parameter for 
lightning strikes 

7.7 3.85 11.55 

𝛷 
Harmonising model 
ontologies of ignitions & 
fires 

650 400 900 

Sup_PI 
Rate of extinguished fires 
for the pre-industrial AFR 

0 0 0.05 

Sup_Trans 
Rate of extinguished fires 
for the transitional AFR 

0.05 0 0.1 

Sup_Intense 
Rate of extinguished fires 
for the industrial AFR 

0.9 0.8 1 

𝜌 
Scaling impact of road 
density on fire sizes 

8.91 4.455 13.4 

Λ 
Impact of logging on 
burned area in forests  

1.5 1 2.25 

𝛼 
Threshold for impact of 
prior fires on fire size 

0.2 0.1 0.4 

𝛽 
Rate of decline in fire size 
due to prior fires 

0.2 0.1 0.4 
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Table S2: Free parameters in INFERNO v1.0 offline -  a baseline model used for evaluation of 

performance of WHAM!-INFERNO. Parameters’ initial, maximum and minimum values in 

model calibration are shown. The baseline model was run with and without the use of road 

density in constraining global fire sizes. Given the substantial uncertainty around parameter 

values, values were sampled from a uniform distribution around an initial value. Cropland, 

grass and pasture burned area per PFT were given two values for C3 and C4 respectively. 

 

Parameter name Parameter function Initial value 
 

Minimum 
value 

Maximum 
value 

TreeBL_BA 
Mean global BA for 
broadleaf trees 

1.7 0.85 2.55 

TreeNL_BA 
Mean global BA for 
needleleaf trees 

1.7 0.85 2.55 

Grass_BA 
Mean global BA for grass 
PFTs (C3 & C4) 

3.2 1.6 4.8 

Shrub_BA 
Mean global BA for 
shrubs 

3.2 1.6 4.8 

Pasture_BA 
Mean global BA for 
pasture PFTs (C3 & C4) 

2.7 1.35 4.05 

Cropland_BA 
Mean global BA for 
cropland PFTs (C3 & C4) 

3.2 1.6 4.8 

𝜎1 
Scaling parameter for 
anthropogenic ignitions 

1 1.5 0.5 

𝜆 
Scaling parameter for 
lightning strikes 

7.7 3.85 11.55 

Sup 
Suppression scaling 
parameter 

1 0.5 1.5 

𝜌 
Scaling impact of road 
density on fire sizes 

8.91 4.455 13.4 

𝛼 
Threshold for impact of 
prior fires on fire size 

0.2 0.1 0.4 

𝛽 
Rate of decline in fire size 
due to prior fires 

0.2 0.1 0.4 


