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Overview of Quality of Transmission Estimation
in Optical Networks

Sergio Cruzes, MSc

Abstract—This paper explores the significance of Quality of
Transmission (QoT) estimation in optical networks and high-
lights the increasing use of machine learning (ML) techniques
to enhance QoT estimation accuracy. It presents a survey of
literature in this area, categorizing studies into classification
and regression algorithms. ML methods are shown to improve
QoT estimation, mitigate nonlinearities, and optimize decision-
making processes. Ultimately, these advancements reduce the
reliance on conservative margins, maximize network capacity,
and decrease infrastructure investment. Accurate and real-time
QoT information is the foundation for efficient routing and
spectral allocation (RSA) systems, it enables proactive failure
management, facilitates network reconfiguration, provides inputs
for optical line optimization and drives optical network automa-
tion.

Index Terms—Quality of Transmission, Optical Networks,
Machine Learning

I. INTRODUCTION

To guarantee a reliable optical communication system,
substantial system margins are allocated to accommodate all
network uncertainties. However, these uncertainties often lead
to the inefficient utilization of network resources. By reducing
these margins, network efficiency can be improved, but this
requires a precise quality of transmission (QoT) estimation.
Techniques like machine learning (ML) and statistical analysis
are being explored for improved QoT estimation accuracy.

A traditional analytical model, while resource-intensive,
can provide reliable estimation of physical layer impairments.
However, it is important to recognize the complexity involved.
The intricate interactions among various systems parameters,
such as signal power, number of channels, link type, mod-
ulation format, symbol rate, and channel spacing, as well
as the effects of linear and nonlinear signal propagation
impairments (such as amplifier spontaneous emission (ASE)
noise, nonlinear fiber Kerr effects, filtering penalties, etc.),
pose challenges in predicting a precise analytical model [1].

In addition, if predictions are unreliable, there will be a
significant spread between expected performance and real
performance. To account for this spread, a larger margin must
be allocated. The margin can be defined as the difference
between the pre-FEC BER at the FEC correction threshold and
the pre-FEC BER at the system operating point [2]. However,
if an improved and finely tuned model can be developed,
the spread between predicted and actual performance can be
minimized, allowing for more efficient allocation of margins.

Sergio Cruzes is with Optical Network Engineering, Ciena Communications
Brazil, Ciena, Av. das Nações Unidas, 14.171 , São Paulo, SP, Brazil, Tel.: 55-
11-99266-4215 (e-mail: scruzes@ciena.com).

Various methods have been proposed to estimate the QoT
by assessing nonlinear impairments in optical links. However,
achieving the high accuracy often comes at the cost of com-
putational speed. The most precise technique involves full-
fiber propagation simulation using Split-Step Fourier method
(SSFM) [3], but it is too computationally intensive for real-
time applications. Analytical tools like the Gaussian noise
(GN) [4] model offer decent accuracy with faster compu-
tation, although they are not accurate as SSFM. Extensions
of the GN model and other close-form methods aim to
reduce computation time but may sacrifice accuracy. Both
simulation and analytical methods require precise knowledge
of link parameters [5], [6], leading to less accurate estimations
when there are parameter deviations. In contrast, ML-based
estimation combines quick computation and high accuracy by
training on input features related to the target metric. While
the training process may take some time, once trained, the
estimation is rapid and suitable for real-time environments.

Selecting the most suitable ML technique for estimating
and forecasting lightpath QoT depends on various factors
such as the complexity of the optical network, the availability
and quality of data, computational resources, and the specific
requirements of the QoT estimation task.

This article aims to explore the techniques outlined in
existing literature and underscore the significance of rapid
and accurate QoT estimation in optical network automation.
QoT estimation serves as vital input to cognitive systems,
particularly the RSA entity, enabling the design of marginless
networks. By facilitating proactive maintenance activities and
enabling efficient network reconfigurations, QoT estimation
plays a pivotal role in optimizing optical network operations.

This paper is structured as follows. Cognition in optical
networks is presented in section II. Section III provides a
brief description of ML techniques in optical networks for
QoT estimation. Section IV provides an overview of the main
QoT indicators as well as a brief description of the main
fiber transmission impairments. Section V provides a brief
description of the main ML algorithms employed in optical
communications. A survey of ML techniques applied in QoT
estimation in optical networks is described in section VI
for regression and classification categories. It also includes
amplifier modeling and open optical networks. Section VII
summarizes the survey results and the conclusion is presented
in section VIII.

II. COGNITION IN OPTICAL NETWORKS

As internet usage keeps growing, problems with signal
quality and network outages becomes more critical in optical
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communication systems. This makes it even more important
to have network management that can adapt and fix problems
autonomously [7], [8]. To help address this challenge, modern
coherent transponders are based on advanced digital signal
processing (DSP) systems. DSP-based coherent transceivers
play a crucial role in enhancing performance monitoring and
leveraging machine (ML) learning for QoT estimation in
optical networks.

The advancements in optical communications, including
technologies like variable bandwidth transponders (VBT), flex-
grid reconfigurable optical add-drop multiplexers (ROADMs),
various modulation and coding schemes, and adjustable sym-
bol rates, all this offers immense flexibility for optimizing
network resources. However, as the complexity and flexibility
increase, so does the need for intelligent systems and advanced
algorithms to effectively manage and allocate these resources
for optimum performance.

The introduction of cognition in optical networks offers
a solution to these challenges by incorporating reasoning
processes and ML techniques into the network’s control plane.
This approach aims to enable autonomous and rapid network
operation, efficient resources control while meeting signal
quality requirements.

Cognition is defined as a capability of the network to ob-
serve, plan, decide, and act autonomously, aiming to optimize
end-to-end performance and minimize the need for human
intervention [9].

A cognitive network management and control system mon-
itors traffic and flow patterns and makes adjustments to the
network to enhance overall performance and promptly handle
transaction requests [2]. This cognitive approach operates
across all network layers and plays a crucial role in decision-
making. It resembles a software defined networking (SDN),
where SDN controller works with a cognitive decision pro-
cess to program network nodes. Cognitive processes utilize
models fed by monitored network performance to make future
decisions automatically and act on the network nodes through
adaptable software elements. In addition, coherent transceivers
serve as versatile software-driven optical tools. Their DSP
ability enables them to electronically counteract propagation
challenges and provide a great amount of information such
as performance metrics, channel conditions, and spectrum
information to the SDN controller.

Cognition systems can optimize routing and spectrum allo-
cation (RSA) decisions by considering various factors such
as traffic load balancing, wavelength continuity, and signal
quality constraints. By continuously learning and adapting
to network dynamics, cognition systems can enhance the
efficiency and effectiveness of RSA algorithms, leading to
improved network performance and resource utilization.

OPM (optical performance monitoring) provides crucial
data needed for QoT estimation. By monitoring network condi-
tions and performance metrics, such as noise levels (linear and
nonlinear) and signal quality, OPM feeds into QoT estimation
process. ML techniques are increasingly being applied to
estimate individual components of optical performance, such
as linear and nonlinear noise, extract patterns and trends of
data collected, improving the efficiency of OPM processes.

In summary, OPM provides essential data for QoT esti-
mation, while ML techniques enhance OPM accuracy and
efficiency. Cognition leverages this data and intelligence to
optimize resource management and ensure signal quality,
addressing challenges associated with network agility and
complexity.

The cognitive network module’s function as a control plane
component is illustrated in Figure 1, influencing all levels
of the network architecture. The cognitive network module
continuously monitors the current state of the network, includ-
ing traffic patterns, link conditions, and overall performance
metrics. By analyzing this information, the module can make
decisions and implement actions to adapt the network config-
uration in real-time.

III. ML IN QOT ESTIMATION

ML techniques encompasses algorithms designed to discern
patterns and behaviors within data, facilitating the creation
of models for a range of tasks [10]. These tasks include
estimating values based on inputs (regression techniques) and
categorizing data into groups (classification techniques). ML
has experienced a surge in popularity across various fields, in
particular in computer vision, speech recognition, and natural
language processing, among others. Numerous articles have
been released on the application of ML techniques across fields
such as routing and spectral allocation (RSA), QoT estimation,
and failure management. These applications demonstrate the
potential of ML to enhance efficiency, accuracy, and reliability
within optical network operations.

Optical network designers [11] have a longstanding interest
in accurate and fast quality of transmission (QoT) estimation.
Accuracy is crucial because simulated errors can lead to
design margins, which in turn results in overestimated capacity
or undesired regeneration. For network planning purposes,
whether it is for a greenfield network or the provisioning
of a new service in an operating network, computation time
of several seconds or few minutes are suitable. However, in
the case of online provisioning, extremely fast calculations
(sub-second) are required but there can be a tolerance of
some estimation errors. This is case for QoT estimation for
restoration due to a fault.

In the realm of optical network planning and operation,
accurately estimating QoT for lightpaths is necessary. Light-
path restoration in case of network failures, is often automated
through the photonic control plane. In order for the lightpath
in its future route to be feasible, accurate QoT estimations
are essential. This is a feature that is part of networks that
encompass impairment-aware RSA. During network recon-
figuration, typically done during maintenance window, QoT
estimation of the future network state is conducted based on
network parameters. Yet, when old equipment is replaced,
fiber attenuation values change, and engineers often need to
intervene using planning tools in the maintenance window. To
streamline this process, networks must evolve to provide real-
time QoT calculations. Currently network reconfigurations can
take six to eight hours, often involving manual steps such
as removing existing lightpaths passing through equipment,
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Fig. 1. Cognitive Optical Network

configuring new hardware, and re-establishing traffic flow.
Automating these processes, including QoT estimation for
future configurations, is crucial for network efficiency and
guaranteed continuous service.

Indeed, there are various indicators or metrics used in
QoT modeling and estimation, such as BER, Q-factor, signal-
to-noise ratio (SNR), optical signal-to-noise ratio (OSNR),
generalized OSNR (GOSNR), generalized SNR (GSNR), the
margin [11], the error vector magnitude, and the eye dia-
gram characteristics [12]. In sequence there will be a brief
description about these metrics. The primary objective of
QoT estimation is to accurately estimate lightpath performance
and construct networks with minimal margin. However, the
specific requirements for QoT estimation vary based on the
specific scenario. In some scenarios, the goal is to determine
whether a lightpath can be established or not [13], [14], [15].
For such cases, ML classification techniques like K-nearest
neighbors (KNN), random forest (RF), support vector machine
(SVM), logistic regression (LR), and artificial neural networks
(ANN) can be utilized effectively [16]. Accuracy is indeed
a common metric used to evaluate the performance of ML

classification models [10]. It measures the ratio of correctly
classified instances (in this case lightpaths) to the total number
of instances. However, it is important to consider other metrics
like precision, recall, and F1-score, especially in scenarios
where the classes are imbalanced.

On the other hand, in scenarios where precise QoT mea-
surements are needed, ML regression techniques such as
convolutional neural networks (CNN), ANN, Gaussian process
(GP), network kriging (NK), and other regression techniques
can be employed. These techniques enable the estimation of
specific QoT metrics with high accuracy, catering to the di-
verse requirements of QoT modeling in optical networks [11].
Common metrics to evaluate the performance of ML regres-
sion models include Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), as well as maximum (MAX) and
minimum (MIN) errors are commonly used. These metrics
help in understanding the accuracy of predictions and setting
appropriate margins for the desired level of confidence in the
model’s output [10].

As previously mentioned, one of the key benefits of having
precise QoT estimation is the ability to manage networks with
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minimal margin. However, it can lead to increased hard failure
probability without proper network maintenance practices. To
mitigate this, networks need to detect and diagnosis issues,
prevent hard failures, and reduce mean-time-to-repair through
failure classification and localization. So, QoT information
needs also to provide means to trigger early detection and
soft failures and not only performance values.

IV. QOT INDICATORS

The quality of light signal traveling through fiber optics can
be affected by various factors. These impairments can originate
from the fiber itself due to propagation and from the equipment
behavior [17]. Fiber-related impairments fall into linear effects
and nonlinear effects. Linear effects gradually weaken the
signal over distance. Attenuation, chromatic dispersion (CD),
polarization mode dispersion (PMD), polarization dependent
loss (PDL), are the most common linear impairments and
are addressed using optical amplifiers and modern digital
signal processing (DSP) techniques in receivers. Nonlinear
impairments consist of Kerr effects and inelastic scattering.
The refractive index of the fiber material changes in direct pro-
portion to the electromagnetic field’s intensity due to the Kerr
effect. It includes self-phase modulation (SPM), cross-phase
modulation (XPM), and four-wave mixing (FWM). Inelastic
scattering consists of energy transfer between the interacting
field and the dielectric medium. Stimulated Brillouin scattering
(SBS) and Stimulated Raman scattering (SRS) are the two
main types of inelastic scattering. Nonlinear impairments are
typically mitigated using power equalizers and modeled using
equations like Schrodinger or Manakov [17]. Recent research
has explored ML solutions for nonlinear impairment miti-
gation. Amplified spontaneous emission (ASE) noise, wave-
length and polarization dependent gain are generated by am-
plifiers. For ROADMs, besides these previously impairments,
it is necessary to include PMD, PDL, filtering effects, insertion
loss and crosstalk.

The primary QoT metric of interest is the bit error rate
(BER) of the lightpath. This metric determines whether the
lightpath is acceptable based on whether the BER falls below
a predefined threshold. Modern transmission systems utilize
forward error correction (FEC) and the pre-FEC BER is
usually used to express the threshold. The BER prior to FEC
is known as pre-FEC BER. FEC is a correction technique that
adds redundancy to data before transmission.

For a specific modulation format, a well-defined mathe-
matical relationship exists between BER and SNR. Knowing
the SNR enables calculation of the expected BER. Similarly,
BER and Q-factor can be mathematically linked. Q-factor is
a dimensionless parameter that indicates signal quality before
applying FEC and is data rate and modulation format indepen-
dent. Different modulation formats have different sensitivities
to impairments and offer varying trade-offs between data rate
and Q-factor requirements. As an example, the quadrature
phase-shift keying (PQSK) modulation requires a higher Q-
factor compared to simpler formats like on-off keying (OOK)
for the same BER.

OSNR refers to the optical signal-to-noise ratio, which
characterizes the noise introduced by optical amplifiers along

the lightpath due to amplified spontaneous emission (ASE),
also referred to as OSNRASE .

OSNR is a crucial metric in optical networks, aiding in es-
timating system performance and providing means to estimate
BER. It serves as a key indicator of impairment in optical
transmission systems, particularly those employing amplifiers.
By knowing OSNR and bandwidth, one can determine Q factor
and BER, reflecting the quality of service (QoS) at the physical
layer and predicting potential packet losses.

The definition of OSNR as the ratio of signal power to the
power of noise within a 0.1 nm bandwidth at 1550 nm is
indeed common in optical networks. However, it is important
to note that as baud rates increases, leading to wider signals,
comparing OSNR becomes more complex. So, defining OSNR
as a pure and independent channel baud rate ratio in units of
dB, also known as SNR or SNRASE , indeed helps to avoid
confusion, particularly when dealing with different baud rate
channels.

The design OSNR is determined using the classical for-
mula [18]:

OSN RDesign = PTOP − NCh − G − NF − NR

(average per channel, in dB/0.1 nm) (1)

where, 58 is a constant related to Planck’s constant, the central
wavelength of the spectrum and optical bandwidth (12.5 GHz),
PTOP is the line amplifier output power in dBm , NCh is the
number of channels in dB, G is amplifier gain in dB, NF is
the amplifier noise figure in dB, and NRis the number of line
amplifiers in dB.

The Design OSNR, while straightforward to calculate based
on system parameter specifications (amplifiers gain and noise
figure), lacks consideration for all impairments present in a
practical system [19] such as ROADM penalties and nonlin-
earities.

With the introduction of variable baud rate transponders in
optical communication systems, a more logical reference may
be to define OSNR (dB/0.1 nm) as SNRASE (dB), removing
any discrepancy on a specific channel count or spacing. OSNR
can be easily converted into SNRASE by using the following
conversion [19]:

SN RASE (dB) = OSN R − 10 × log10(Bo/12.5GHz) (2)

where,12.5 GHz is the reference bandwidth, Bo is the spectral
width within which the channel under test is defined in GHz,
and OSNR is referenced to dB/0.1nm. For example, if the
spacing is 50.0 GHz and assuming a classical spacing for a 30-
35 Gbaud transponder, the SNRASE would be approximately
6.2 dB lower than the OSNR.

In optical communication systems, fiber propagation impair-
ments caused by attenuation, chromatic dispersion, and Kerr
nonlinear effects can be estimated as additive white Gaussian
noise (AWGN). Since all major propagation impairments, such
as ASE and nonlinear impairments (NLI), can be represented
or modeled as Gaussian disturbances, i.e., as NLI is treated as
an additive white Gaussian noise (AWGN) which is statisti-
cally independent of ASE noise, the performance of an optical
channel can be evaluated using a unique metric called signal-
to-noise ratio (SNR). This metric is referred to Generalized
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OSNR (GOSNR) which consists in the summation of the
linear and nonlinear effects. ITU-T Recommendation 977.1
defines [20] the link GOSNR according to following equation:

1/GOSN R = 1/(OSN RASE ) + 1/(OSN RNLI ) (3)

where both noise power and signal are referenced to the
same optical bandwidth, typically 0.1 nm (12.5 GHz). The
OSNRASE in equation (1) depicts the component of the
OSNR caused by ASE noise only. The OSNRNLI refers to
the nonlinear distortions. Since the most common coherent
technology at the time was 30 to 35 Gbaud 100G DP-QPSK,
it made sense to describe GOSNR in terms of 120 channels
with 37.5 GHz carrier spacing [18].

Regarding measurement, OSNR evaluation for network per-
formance validation brings challenges such as tight channel
spacing in DWDM systems and inaccuracies in traditional
OSNR measurements [21] . The traditional method of evaluat-
ing OSNR, also called OSNRASE , faces some challenges. In
dense wavelength division multiplexed (DWDM) systems, the
close spacing between channels makes it difficult to distinguish
the noise floor. Additionally, OSNRASE mainly considers the
ASE noise as the nonlinear interference is primarily in-band.
Finally, using the optical spectral analyzer (OSA) to measure
the OSNRASE requires to turn-off adjacent channels which
causes disruption in normal operation. So, the concept of
generalized OSNR (GOSNR) is introduced [22] , aiming to
capture optical impairments more accurately, including linear
and nonlinear noise. GOSNR is determined as the OSNR
value required to achieve the same BER in a back-to-back
transmission scenario, considering both linear and nonlinear
impairments [22]. The previous defined concept of GOSNR
takes account that [18] the optical line can be modeled using
the GN model and that the relationship between fiber nonlin-
earities and BER in digital coherent systems is predictable.

The rapid movement of coherent technology toward variable
bitrates, higher symbol rates, and probabilistic constellation
shaping, GOSNR needed to be modified to become the gener-
alized SNR (GSNR), a metric that is independent of channel
spacing, modulation format, and symbol rate [18].

Recent papers have proposed to define a new metric called
SNR or SNRASE , similar to OSNR but with the noise
bandwidth equivalent to the signal bandwidth. This would
make the metric independent of modulation format, channel
spacing, channel count, and symbol rate, providing a more
comprehensive measurement that accounts for all noise ob-
served at the receiver. Consequently, it provides a unique
and comparable modem-independent performance indicator
for optical networks.

The relationship between OSNRASE and SNRASE is de-
fined in [18] in linear units as follows:

SN RASE =
Bo

4 f
OSN RASE (4)

where,
Bo is the optical noise bandwidth (usually 12.5 GHz at 1550

nm) that is used to define OSNRASE

The carrier spacing in GHz, ∆f, is used to define OSNRASE

for a system fully loaded.

The power spectral density (PSD) is assumed to be uniform
throughout the bandwidth.

The channel’s power to the total ASE noise accumulated
from in-line amplifiers and NLI as a result of fiber transmission
is known as the generalized SNR (GSNR), which is evaluated
wholly in the signal bandwidth.

GSNR is defined in linear units as [23]:

1
GSN R

=
1

SN RASE
+

1
SN RNLI

(5)

where, SNRASE is the channel width independent OSNR
previously defined, and SNRNLI is the noise generated from
the nonlinear interference.

It is worth reiterating that the GSNR metric is independent
of the modulation format. It is an optical line parameter
dependent on spectrum, mainly characterized carrier spacing
and symbol rate. The GSNR baseline refers to the maximum
spectrum occupancy where the calculation is done based on
Gaussian noise model.

To meet the evolving demands of network operators, optical
networks are transitioning towards full disaggregation, where
subsystems operate independently but share common data
structures and interfaces. This necessitates interoperability
among systems from different vendors, ensuring that physical
lightpaths can be provisioned with transponders from different
manufacturers. Planning such networks requires physical layer
abstraction, often estimated using the GSNR. The total GSNR
across multiple domains [24] is calculated considering con-
tributions from ASE noise and NLI, which includes effects
like XPM and SPM. XPM is typically treated as a local,
statistical effect, while SPM generation within fiber span is
stochastic. A localized physical layer abstraction is crucial for
planning and managing networks effectively, allowing for a
fully disaggregated approach.

When considering a series of optical domains, the total
GSNR is calculated by summing the inverses of individual
GSNRs as described by [24]:

GSN R−1 =
∑N

i=1 GSN R−1
i (6)

where GSNRi is the GSNR value of each optical domain.
Most of modern coherent modems employs the effective

SNR (ESNR) metric to capture optical performance compre-
hensively. It accounts for various penalties including linear,
nonlinear, modem noise (SNRM ), and other impairments
(SNRI ). By encompassing these factors, ESNR provides a
holistic view of the signal quality, enabling more accurate
assessment and optimization of optical network performance.

The Required ESNR (RESNR) serves as the ESNR limit
for a modem, akin to the FEC limit represented in dBQ. Each
modem generation and transmission mode may feature its
own distinct back-to-back RESNR. It is crucial to understand
that, like FEC and dBQ, RESNR remains constant regardless
of propagation, making it a fixed value for a given modem
generation and transmission format.

In an optical coherent modem, the noise on each received
symbol is estimated by comparing it with the estimate of the
corresponding transmit symbol. This noise field encompasses
contributions from ASE, fiber nonlinearity, decision errors,
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among other sources. In [25] is estimated the contribution
of SNR by using the temporal and polarization correlations
imposed on the nonlinear noise by the Kerr nonlinear effects.
It accounts for nonlinear noise contributions from cross-phase
modulation (XPM), self-phase modulation (SPM), and cross-
polarization modulation (XPolM).

At a high level, coherent optical engines consist of three
main components: a digital ASIC (DSP), analog electronics,
and photonics. The DSP handles signal processing for both
receive and transmit directions, including modulation, spectral
shaping, and compensation for various impairments. Digital-
to-analog (DAC) and analog-to-digital (ADC) conversion oper-
ations are included in DSPs. FEC, framing, and encryption are
also integrated into the DSP. Coherent modem noise refers to
penalties related to compensating for various impairments like
polarization dependent loss (PDL), chromatic dispersion (CD),
laser linewidth dispersion interaction (laser phase noise), and
wavelength tolerance (caused by the number of filters in the
path, flexgrid crosstalk, laser frequency drifts) [19]. Figure 2
provides a high-level schematic of the coherent module.

Table I provides a summary of the performance metrics
described in this section.

V. ML TECHNIQUES BACKGROUND

In recent literature, there has been a surge of interest in
surveys of research using ML techniques in optical networks.
While several papers have provided comprehensive overviews
of ML applications in optical networks, this paper focus only
on studies for QoT estimation. The objective is to analyze and
address the current state of the art in this specific use case,
aiming to provide insights for future research in this area.

Artificial Intelligence (AI) [10] involves equipping machines
with cognitive abilities to execute tasks intelligently, mirroring
human-like performance. ML, a prominent AI subset, employs
algorithms to detect patterns and behaviors in data, facilitating
the creation of models for tasks such as estimation and data
categorization. ML has gained significant traction in various
fields, especially in computer vision, speech recognition, and
natural language processing. ML serves as a catalyst for
building cognitive optical networks by leveraging increased
data accessibility and computer power. ML techniques are cat-
egorized into three families: supervised learning, unsupervised
learning, and reinforcement learning [2]. Supervised learning
invokes known database information, suitable for classification
and regression tasks. Unsupervised learning operates without
defined labels, primarily used for clustering and dimensionality
reduction. Reinforcement learning adopts a reward strategy,
enabling agents to make decisions in complex environments,
with Q-learning being a common algorithm in this category.

A. Supervised Learning

Supervised learning consists in training an algorithm to
understand the correlation between input and output data by
observing labeled examples. These labeled examples consist
of input-output pairings, where the output is already known.
Techniques used in supervised learning include logistic regres-
sion, which predicts categories, and linear regression, which

makes continuous predictions, such as estimating the OSNR
or the GSNR of a lightpath. The objective is to develop a
prediction tool that can accurately forecast the output for new,
unseen input data.

There are many different ways to train these models, like:
• Artificial Neural Networks (ANN) : influenced by the

human brain, these networks use layers of interconnected
nodes to process information. These nodes or units, called
neurons, are arranged in layers. Each neuron receives infor-
mation or inputs, adjusts its importance (weights), and adds
a small influence (bias) before passing it on. By adjusting
these weights and bias over time, the network learns to solve
problems. In optical networks, ANNs are used in various
ways. For example, they can be embedded in digital signal
processing devices (DSPs) to fight signal distortions or to
estimate the quality of lightpaths. Three layers make up a
typical ANN: the input layer, which receives the raw data,
the hidden layer, which processes and modifies the data, and
the output layer, which generates the final result [8].
• Naïve Bayes: this method assumes that different features

(like pieces of a puzzle) act independently. It uses [26] Bayes
theorem to calculate the probability of something belonging
to a certain category based on various features. It assumes
that these features are independent, which is not always
realistic. When dealing with complex data, Naïve Bayes can
be combined with techniques like kernel density estimation to
improve accuracy. It is often used for tasks like classifying
text or recommending products. In optical networks, it can
be used to identify different types of damage in fibers. This
method assumes that different characteristics affecting the
signal traveling through a fiber optic are independent of each
other, such treating each clue (like low signal strength) as
independent evidence for a potential problem (like a fiber
bend).
• Random Forest (RF): Numerous [27] decision tree

models are generated and combined using the random forest,
each with some randomness in how it split data at each step
to help prevent all the trees from making the same mistakes.
A random subset of the training data is used to build each
tree. This helps ensure they learn different patterns from the
data. When a new data point arrives, all the trees in the forest
vote on its class (like for example spam or not spam). The
final prediction is based on the most popular vote. RFs are
generally accurate and resistant to overfitting as well as do not
need massive fine-tuning. In optical networks, this approach
can be used to predict the quality of lightpaths or monitor
signal quality.
• Suport Vector Machine (SVM): this model is like

powerful separators that can divide data points into different
categories. They are great for both classification and prediction
tasks. In fiber optics, SVMs have been proven to be effective
in mitigating various types of noise, such as nonlinear phase
noise (NLPN), laser phase noise, fiber nonlinear Kerr efect,
modulator linearity issues, ASE noise, both linear and nonlin-
ear signal detection challenges, and de-mapping of high order
modulations with rotated constellations [28], [29].
•K-Nearest Neighbors (KNN): it works [15] with any kind

of data, without needing to guess how the data is distributed.
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Fig. 2. High level coherent module

TABLE I
OPTICAL SYSTEM PERFORMANCE METRICS

Performance metric Definition
OSNR It measures the ratio of optical signal power to the noise (ASE linear noise) within a specified

bandwidth (0.1 nm). Its formula considers only the linear ASE noise as impairment. It is dependent
on the channel number count (120 channels is commonly used).

GOSNR It extends the concept of OSNR to account for various impairments, such as nonlinearities, by treating
them as additional noise components. NLI is considered as AWGN, statistically independent of the
ASE noise. So, GOSNR can be defined as the ratio of the optical signal power to summation of linear
and nonlinear noise. But GOSNR is not independent of the baud rate, channel space and modulation
format.

GSNR It is a metric that is independent of channel count, symbol rate (baud rate), and channel spacing. It
is the ratio of the channel’s power to the total power of all noise sources, including ASE and NLI,
within the signal bandwidth.

ESNR It quantifies the signal quality by considering all penalties (linear and nonlinear), including the modem
noise (penalties related for compensating chromatic dispersion, polarization mode dispersion and
polarization dependent loss, laser phase noise and wavelength tolerance)

It does not process any data during training. It just stores
it. It is known as a “lazy learner” [7] because most of the
calculation and computation is done when testing to determine
the class of a new input, making it computationally costly
for large datasets. When a new data point arrives, it finds
the K closest examples in memory and predicts its category
based on their majority. The number of neighbors (K) can
affect the prediction. A smaller K might be more sensitive to
outliers, while a larger K might smooth out details. KNN uses
distance metrics, like Euclidean distance, to find the closest
neighbors. In summary, it classifies new data points based on
their similarity to existing data. In optical networks, KNN can
be used to overcome signal nonlinearities.

• Convolutional Neural Networks (CNN): it is a special-
ized neural network type intended for handling grid-like data,
such as images [30]. It utilizes operations like convolution,
pooling, and activation to obtain features from the input data.
Convolution consists in a process of sliding a filter over the
input to extract information features, while pooling reduces
the dimensionality of the feature map. In pooling, nearby
outputs are summarized, often using max or average pooling.
Activation functions such as ReLU improve the network’s
representation capacity through non-linear mapping. CNNs
excel at tasks object detection, image recognition, and video
translation. In optical communication, [31] where data is often
represented as images, CNNs can be used for tasks like
channel estimation, equalization, optical signal analysis, and
constellation image processing [32]. The typical input images
in optical communications are eye diagrams, constellation
images, and optical spectrum diagrams.

• Logistic Regression (LR) : it is a type of algorithm that
uses the logistic function to make predictions [33]. The logistic

function always gives a result between zero and one, which can
be thought of as a probability. Determining the best parameters
for the logistic function is the goal of LR, so that the predicted
values are as close as possible to the real values. Once the
parameters are set, making predictions for new examples is
straightforward using the logistic function. In optical networks,
based on the chosen factors and their measurements, the LR
model can calculate the probability of the system being healthy
or degraded [34].

B. Unsupervised Learning

Unsupervised learning [2] focuses solely on input data
x, unlike supervised learning, which considers both input x
and output labels y. In unsupervised learning, the algorithm
aims to identify underlying structures, patterns or interesting
aspects within the data with no predetermined output labels.
Essentially, there are no specific inputs or outputs; the data
is merely a collection of examples. The primary objectives
include clustering, where algorithms like K-means group data
into groups or clusters based on similarity, dimensionality
reduction techniques like principal component analysis (PCA)
which maps high-dimensional data into smaller set data, and
anomaly detection, which identifies data points that deviate
significantly from the typical behavior.
• K-means clustering: it is a powerful unsupervised learn-

ing classification method commonly used to solve classi-
fication problems with unlabeled data [2]. It divides data
into k clusters based on similarity, aiming to minimize the
total squared error distance to the centroid. This technique
finds applications across various industries, from banking to
cybersecurity, document clustering to image segmentation. In
optical networks, K-mean can address challenges like non-
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linear impairments mitigation on constellation diagrams and
identification of anomaly detection. Anomaly detection iden-
tifies outliers or deviations from the norm, making it valuable
for detecting issues like fiber events or amplifier malfunctions.
Anomaly detection is crucial for effective management of
modern optical networks.
• Principal Component Analysis (PCA): it reduces com-

plexity by identifying the most important patterns in the data
and creates a new, smaller set of measurements that capture
those patterns. This is like summarizing a long document
into the key points. PCA is often used for tasks like finding
the main structure in a dataset, reducing noise and making
data easier to analyze, and visualizing complex data in fewer
dimensions like showing a three-dimensional object in a flat
screen. In [35] is described a method that combines data
scrambling and PCA for confidentially detecting failures in
optical networks. PCA is applied to find patterns, scramble
the data and detect errors.

C. Reinforcement Learning

Reinforcement Learning (RL) [32] is a learning method
where an agent learns by getting rewards for certain actions
it takes. The goal is to make decisions that maximize rewards
over time. This learning happens by interacting with the
environment, where the agent tries different actions and learns
from the outcomes. In RL, the agent follows a policy, which
is like a strategy map showing what actions to take in each
situation. This process is guided by a mathematical framework
called the Markov decision process (MDP), which helps RL
algorithms work well. RL is useful in network automation and
control, especially in areas like routing, resource allocation,
and configuration in optical networks.

D. Recurrent Neural Networks (RNNs)

RNNs are a category of artificial neural network designed to
handle sequential data by retaining memory of previous inputs.
RNNs handle sequential data by retaining internal states
across time steps and can be trained using a technique called
backpropagation through time. However, they face challenges
like vanishing gradients (loss function derivatives become
extremely small, so the weights in the early layers are updated
very slowly) or exploding gradients (loss function derivatives
grow exponentially, causing the instability and making the
learning process to diverge) for long-term dependencies [22].
ML can be even more powerful when we combine multiple
learning tasks. This is called multitask learning, and it allows
models to learn from each other and improve overall perfor-
mance.
• Long Short-Term Memory (LSTM): on powerful tool

for sequential data, like a stream of information, is a spe-
cial type of neural network called LSTM network. Unlike
traditional neural networks, LSTMs [22] have a “memory”
that allows them to remember past information and use it
to understand current data. This makes them ideal for task
like speech recognition or processing long sequence of data
in optical networks.

• Gated Recurrent Unit (GRU): GRUs [22] is another
type of neural network architecture specifically designed for
processing sequential data, similar to LSTM networks. They
are simpler than LSTMs and require less memory, making
them a good choice for situations where computational re-
sources are limited.

Traditional feed-forward neural networks process data only
in a forward direction without cyclic connections, making
them efficient for learning but not suitable for sequential
and variable-length data. RL networks can struggle with very
long-term dependencies. When dealing with tasks with long-
term dependencies, RNNs might be a better choice. LSTMs
networks address these issues as well as vanishing and ex-
ploding gradients but require high memory usage due to the
presence of multiple memory cells. GRUs networks, which
provide a similar solution to LSTM but without separate
memory cells, offer a solution that exposes the entire state
of the network at each time step. RNNs, particularly LSTM
and GRU, are applied in QoT forecasting tasks, aiming to
detect performance degradations for proactive maintenance.
Univariate models, which use only one input variable, and
multivariate models, which incorporate two or more inputs
variables, are trained using LSTM and GRU architectures
with single lightpath data, showing varied performance across
different model architectures. Linear regression models, such
as ANNs, sometimes outperform RNNs but are sensitive to
outliers in the time series data [7].

E. Evaluation Metrics

In evaluating QoT models, different metrics are employed
depending on whether the model is designed for classifica-
tion or regression [36]. For classification models, accuracy
is commonly used, but it may be misleading when classes
are imbalanced. So, it is crucial to consider the area under
the ROC curve (AUC) [13]. ROC means receiver operating
characteristic. AUC provides a more robust evaluation of the
classifier performance. It measures how well the classifier
distinguishes between positives and negatives instances, irre-
spective of the chosen threshold.

In regression-based QoT estimator, metrics focus on the
distribution of errors between the estimated and actual QoT
values [36], [37]. Average error indicates overall performance,
while maximum error offers insights into high-probability
margins. The cumulative distribution function (CDF) allows
for accessing intermediate probabilities while the root mean
square error (RMSE) measures the average magnitude of
errors. Additionally, the R2 score parameter indicates the
proportion of variance in the QoT values that the model can
explain. An R2 value of "1" indicates a perfect fit, where the
model explains all the variance in the data. Conversely, an
R2 value close to "0" suggests the model has little explana-
tory power. These metrics collectively offer insights into the
accuracy and reliability of regression-based QoT estimators.

This paper focuses on the tasks that are crucial for fast
lighpath setup and proactive network failure management:
QoT estimation for new or unestablished lightpaths and QoT
estimation for existing or established lightpaths.
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QoT estimation before lightpath establishment involves
metrics like BER, OSNR, GOSNR, GSNR and EVM. An
accurate estimation requires precise evaluation of linear and
nonlinear impairments. Analytical models typically calculate
these metrics based on system and link parameters, using
methods like the numerical split-step Fourier method or using
the Gaussian noise assumption. Using ML can reduce the
need for complex calculations and uncertainty in traditional
models. These models can be trained with labeled data to
predict the QoT of unestablished lightpaths [26]. QoT forecast-
ing for deployed lightpaths becomes challenging in dynamic
environments where system parameters fluctuate due to factors
like temperature effects or aging. In such cases, analytical
models may struggle, and ML techniques can be beneficial.
QoT forecasting aims to spot performance issues early by
adjusting parameters like modulation format, bit rate, symbol
rate, and optical power of the transceivers and take actions in
advance before transmission errors occur [26].

ML-based QoT estimators utilize ML techniques to forecast
whether the QoT of a candidate lightpath in an optical com-
munication system is above or below a predefined threshold or
to estimate the accurate value of a lightpath’s QoT. These esti-
mators often rely on artificial neural networks (ANNs) which
are highly capable information processing models known by
their efficiency in classification and regression tasks when
appropriately configured and trained. Despite their effective-
ness, constructing ANN models can be challenging due to
the complexity involved in their configuration and training
process.

Different scenarios [38] demand different QoT estimators,
ranging from determining if a lightpath can be established or
obtaining specific QoT metric values. In case of determining
if a lightpath can be established or not, classification methods
like KNN, RF, SVM, logistic regression (LR), and ANN are
suitable. In scenarios requiring precise QoT values, ML re-
gression methods like network kriging (NK), Gaussian Process
(GP), ANN, and CNN are utilized.

The training process of an ML-based QoT estimation model
involves multiple steps, as depicted in Figure 3.

The process begins by gathering data from simulations,
experimental setups, or operational networks. This dataset
comprises input features (denoted as X) that influence QoT
estimation. Feature selection involves cleaning the dataset and
identifying the features that have relevant impact. Next, the
dataset is divided into three subsets: one for training the
model, another for validation, and a third for testing. During
the training phase, the model learns to predict QoT values
from the training data. In the validation phase, the model’s
parameters are adjusted to improve its performance. Finally,
the model’s effectiveness is tested using the testing data to
ensure accurate QoT predictions. This learning process applies
to various types of ML models, including regression and
classification models, and enables the development of accurate
QoT estimation systems tailored to specific network scenarios.

VI. SURVEY OF ML-BASED QOT SOLUTIONS

In this section, it is presented a survey of papers focused
QoT estimation using machine learning. The papers are cat-
egorized into three groups: Regression, Classification, and
Regression based on RNN and ANN.

A. Regression for BER, OSNR and GSNR prediction

Techniques using ML for predicting BER, OSNR and
GSNR.

In [16], a cost-effective method using a single photodiode
to estimate OSNR directly from detected data. This method
involves extracting features from directly detected (DD) data,
such as the power eyediagram after the photodetector, to
predict OSNR. Examining the variance in the eyediagram, it
is possible to extract several features. A neural network with
just one hidden layer can effectively perform this estimation.
This approach eliminates the need for costly optical spectrum
analyzers throughout the network. The method for OSNR or
GSNR estimation is shown to be independent of the modu-
lation, but it requires training using the specific modulation
format intended for transmission.

In [39] is proposed a regression model using a ML algorithm
to refine initial QoT estimations. Links and lightpaths are
initially allocated using a QoT estimator based on propagation
physics, using an initial margin. Based on monitored data
collected from this initial deployment (pre-FEC BER, NF, fiber
input power), the model is refined by an ML algorithm and
new lightpaths are deployed with a lower margin. The ML
algorithm increases its accuracy as new inputs or requirements
are introduced into the system and consequently, the overall
system efficiency is enhanced. The learning process, applied
to a European backbone network, significantly reduces QoT
inaccuracy for new demands, regardless of initial parameter
uncertainties. By using measured data in a gradient descent
algorithm, design margins can be lowered, leading to reduced
QoT prediction errors. In a brownfield network, the method
reduces overprovisioning and equipment costs in optical net-
works. The method predicts SNR values with typical errors
lower than 0.1 dB.

In [40] is investigated Gaussian Process Regression (GPR)
for predicting BER in WDM systems. The model learns
from measured data under specific system configurations and
applies this knowledge to predict performance for new config-
urations. This approach offers advantages in capturing com-
plex system dynamics more easily than through simulations.
Numerical simulations reveal that GPR can accurately predict
BER in a four-dimensional input parameter including power,
number of spans, symbol-rate and bit-rate. It can predict BER
in real WDM systems with 95% confidence interval. So, BER
can be accurately estimated in brownfield systems with GPR
model trained with synthetic data. Q error is lower than 0.3
dB.

In [37] is explored ML regression to predict the probability
distribution of GSNR. Three regression approaches are eval-
uated using synthetic data generated by simulating network
scenarios using the GNPy tool. The study identifies limitations
of classification-based approaches and proposes an ML-driven
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Fig. 3. QoT estimation’s training process

QoT estimation method based on regression. It treats the
GSNR measure as a random variable (due to amplifier noise
figure variation) with a probability distribution function (PDF),
considering factors such as traffic load, modulation format,
lightpath length, and number of links crossed. Three regression
techniques are evaluated for predicting the PDF of the GSNR
of a candidate lightpath before deployment. This enables
not only determining if a lightpath configuration surpasses a
system threshold but also quantifying the proximity of the
predicted GSNR to that threshold. This approach achieves
a performance cost penalty lower than 0.069, indicating im-
proved accuracy in deployment decisions compared to relying
solely on a single estimation point.

In [25] is compared ML (ANNs) with analytical models for
QoT estimations. A single hidden layer ANN was employed
as the ML algorithm model. For the analytical model, it was
considered all contributions involved in the calculation of the
SNR such as ASE noise, nonlinear noise (SPM and XPM),
and transceiver noise (calculated using the GN model). Per-
channel features such as input power, amplifier gain for each
channel in the link, as well as equipment and fiber attenuation
were taken into account.

B. Classification for QoT prediction

Various techniques use ML for QoT classification of un-
established lightpaths.

In [13] is proposed the use of an ML classifier to forecast
whether the likelihood of the receiver BER of a potential
lightpath fall within the system’s tolerance threshold. Various
features such as traffic flow, type of modulation format,
total lightpath length, longest link length, and the number of
links in the lightpath route are considered. The classifier is
trained from BER measurements from deployed lightpaths and
from lightpath probes which provide information that normal
lightpaths do not provide. Results reveals high accuracy (84%)
and the AUC. Transceiver savings can reach 17%.

For a case-based-reasoning (CBR) model [41] experimental
results achieved successful classification ranging from 79%
to 98.7% with a small knowledge base. CBR is an artificial
intelligence approach that tackles new problems by finding
similarities with past cases stored in knowledge base (KB).

By leveraging the historical KB, the QoT estimator can
accurately determine if a lightpath meets the QoT criteria
before establishment, enabling a fast decision-making process
based on previous experiences.

In [15] is explored the use of knowledge-defined networking
(KDN) to enhance network responsiveness and automation.
KDN complements SDN by integrating reasoning engines or
process and ML algorithms into the networks’ control plane.
The study focuses on improving the validation process for
unestablished lightpaths that is crucial for network operation.
Different ML models (KNN, SVM, logistic regression, classi-
fication regression, ANN) were trained on network data (span
length, transmitted power, bit rate, type of modulation format,
number of spans, average length, maximum link length, av-
erage span attenuation, average dispersion) to predict whether
a lightpath would meet quality requirements. ANN provided
better results, achieving 99% accuracy. Output is based on
continuous SNR values or two classes of values.

In [42] a new method using SVM has been developed to
categorize lightpaths as either high or low quality based on
their QoT. The results show that this SVM approach notably
decreases the time needed to assess a lightpath’s QoT, a critical
and crucial aspect of network design, while also slightly
improving accuracy. The proposed QoT estimator outperforms
previous analytical methods and cognitive proposals in terms
of accuracy, achieving up to 99.95% success rate in classifying
lightpaths (BER) with better computing time over previous
approaches. Several factors influence the QoT of a lightpath,
with span length being one of the most impact. Other inputs
considered are the total lightpath length, and number of
wavelengths.

In [43] is presented a study that employs deep graph convo-
lutional neural networks (DGCNN) to estimate QoT in optical
networks. Within a centralized SDN, real-time network state
information is collected and stored in a database through OPM.
The ML application, integrated with the database, utilizes
datasets to train the DGCNN model, which learns to classify
unseen network states. The DGCNN achieves convergence to
a QoT model accuracy ranging from 92% to 97%.

In [44], the authors explore the application of SVM and
ANN classifiers for predicting the QoT of unprovisioned light-
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paths. SVM and ANN achieved high classification accuracy
initially but decreased when using reduced feature sets. The
ANN and SVM model achieved a QoT estimation accuracy of
99.56% and 99.38% when using the full set of features.

In [45] is demonstrated an approach that employs a robust
QoT decision method based on pattern recognition techniques,
using feedforward NN to analyze data from previously es-
tablished connections. The method relies on data rather than
specific measurement tools or physical layer impairments. The
model was trained with different wavelenghts and exhibited
high accuracy ranging from 92% to 95%

C. Regression for QoT using RNN and ANN with spectral data

Methods for enhancing QoT estimation in optical networks
are explored, including the incorporation of spectral data and
utilizing ML algorithms [22]. ML techniques demonstrate
high accuracy even when detailed component information is
unavailable. It is explored methods to enhance the assessment
of QoT in optical communication systems by concentrating
on using spectral data to enhance the QoT estimation accu-
racy. Through experimental investigations, it is evaluated the
effectiveness of these enhanced techniques in assessing the
performance of an agnostic network. Using ML, QoT can
be estimated without precise knowledge of network param-
eters. Simulated data includes transmission-related features
and spectral-related features. Transmission-related features
are composed of a transmission vector (modulation format,
channel power, channel spacing, symbol rates or baud rates,
and total link lengths) and a length vector containing the
fiber lengths between the network element nodes. Spectral-
related features are composed of a vector containing the
power spectral density (PSD) or the total signal power, and a
vector containing the channel powers. A LSTM and an ANN
based framework are trained on simulated data. LSTM handles
variable-length features while ANN processes fixed-length
ones. Figure 4 shows the basic structure of the framework.
Various ML algorithms including neural networks, support
vector regressor, tree structures, and convolutional neural net-
works, are compared for QoT estimation. The findings indicate
that algorithms using spectral features excel with experimental
data, reaching impressive accuracy. They achieved R2-scores
of over 0.9, meaning they closely predict observed values
according to the statistical metric R2. This enables reliable
QoT estimation even when detailed component information is
unavailable. This approach is very valuable for disaggregated
networks where confidential data is not shared.

In [44], LSTM and GRU models were proposed for SNR
prediction for 4 days’ time-horizon. The LSTM model showed
superior performance in forecasting over longer horizons (the
LSTM’s R2 started low at -0.0148 for a 1-hour forecast but
steadily improved, reaching 0.1415 for a 96-hour forecast),
outperforming the baseline at 24, 48, and 96 hours.

In summary, the process involves collecting data and pro-
cessing it using algorithms to generate useful intelligence
for decision-making. Once this process is implemented in
hardware and software, actuators will execute the decisions,
driving optical network automation. QoT estimation is one of

the factors considered by the RSA algorithm in flexible-grid
networks. The main role of the RSA algorithm is to find the
best path for lightpaths and assign the appropriate spectrum
for them.

QoT estimation serves as one of the inputs to the RSA
algorithm in flexible-grid networks. The RSA algorithm’s main
task is to determine the optimal route for channels and allocate
the appropriate spectrum for the corresponding lightpath.

A well-designed RSA algorithm considers physical impair-
ments and selects routes and spectrum information promptly
for both new lightpaths and the restoration of existing ones.
For successful planning, deployment, and operation of intelli-
gent optical networks, it is vital to establish a simple, direct,
and adaptable QoT estimation process prior to provisioning
lightpaths and restorations [2].

The automation approach relies on models like neural net-
works (NN), RF, NK, SVM, and others. These models consider
parameters such as OSNR, SNR, BER, or other relevant
factors from existing lightpaths in the network. By comparing
measured parameters with expected or calculated values, a cost
function is constructed. Using gradient descent algorithm, this
cost function is iteratively minimized. Once convergence is
achieved, the minimized cost function indicates that a new
lightpath can be added to the network with reduced margins,
optimizing network performance and resource utilization [2].

Expanding [2] upon foundational model, additional vari-
ables such as lightpath length, amplifier characteristics, traffic
volume, and other relevant data can be incorporated to enhance
its capabilities. This enhanced model can further address issues
like chromatic dispersion, polarization mode dispersion, Kerr
effect, and other linear and nonlinear impairments. These
impairments can distort the shape of symbol points in the
constellation diagram of coherent optical signals. By estab-
lishing direct input-output relationships between monitored
parameters and desired outputs, the model aims to mitigate
these impairments and optimize optical signal quality.

Figure 5 shows the basic elements of a QoT estimator. This
proposed model can be enhanced by incorporating additional
variables that an analytical model work with such as fiber
attenuation, spectrum usage and other pertinent data [2].
This enhanced approach is capable of mitigating various
impairments in optical communications systems, including
polarization mode dispersion (PMD), chromatic dispersion
(CD), fiber Kerr effect, and other effects (linear and nonlinear)
that affect constellation diagram’s shape in coherent optical
signals. By incorporating these variables, the model establishes
clear connections between monitored parameters and desired
results. This enables a more comprehensive understanding of
the system’s behavior and allows for more effective mitigation
of impairments. Additionally, the model’s ability to incorpo-
rate inputs from analytical models enhances its accuracy and
predictive capabilities, making it a valuable tool for optimizing
optical communication system performance.

In essence, accurately estimating QoT is vital for flex-grid
networks. Real-time QoT estimation is crucial for promptly
provisioning new lightpaths and restoring existing ones. Net-
work planning must transition from offline to real-time pre-
dictions, utilizing current fiber conditions, amplifier settings,
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Fig. 4. LSTM QoT estimation framework

Fig. 5. Basic model to estimate the QoT of an optical comunication system

and network topology. With the introduction of the GNPy
(Gaussian noise simulation in Python), which is a vendor-
neutral approach for performance prediction, QoT assessment
based on GNPy leverages the deployment of disaggregated
optical networks. Additionally, accurate QoT prediction aids
in early detection of soft failures in optical networks, which go
unnoticed and can degrade performance gradually. By lever-
aging real-time optical data and ML, operators can proactively
identify and address faults, moving away from traditional
threshold soft failure management.

D. Novelty in QoT estimation

Existing methods commented so far for QoT estimation in
optical networks primarily rely on regression or classification
techniques. These methods play a crucial role in designing

and planning optical networks by ensuring efficient resource
allocation, reduced margins, and enabling efficient effective
failure management. However, in elastic optical networks
(EONs), QoT estimation must address fragmentation issues
to optimize resources effectively. Dealing with fragmentation
issues is an RSA responsibility. But QoT estimation entities
needs to handle the complex interplay with RSA and PCE
entities in modern optical networks. Additionally, modern QoT
estimation should account for challenges like estimating light-
path quality in optical C+L bands, where impairments such as
inter-channel stimulated Raman scattering (ISRS) affect signal
quality, making the OSNR more frequency-dependent [46].

In [47] is detailed a multi-band transmission (MBT) systems
focused on developing fast and accurate models to estimate
QoT. Results indicate that the closed-form ISRS GN model
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offers a satisfactory balance of speed and accuracy. It takes
only 0.2 seconds to estimate the QoT for all channels in the
MBT systems. The model overestimates GSNR by a maximum
of 0.1 dB and underestimates it by 0.4 dB in case of lower
launch power scenarios. However, with higher launch power
cases, the GSNR estimation error increases to 1.5 dB.

The model demonstrated a maximum overestimation of the
GSNR of only 0.1 dB and an underestimation of 0.4 dB only
for the lower launch power cases. However, for higher launch
power cases, the GSNR estimation error reaches 1.5 dB.

In terms of accuracy, in [48] is proposed a new method
called invariant convolutional neural network predictor (IC-
NNP) to address challenges in QoT estimation, focusing
on variable link configurations and distribution drifting of
transmission parameters. The system includes a specialized
encoder to combine channel and link details, along with a
convolutional neural network to make predictions. In a 72
hours evaluation period, the standard deviation of the SNR
prediction error remained under 0.25 dB.

In large disaggregated optical communication systems, en-
hancing the precision of QoT estimation is vital. In [49]
is proposed a methodology based on refining signal power
measurements and incorporating additional parameters into
the analytical model to reduce QoT estimation errors. The
methodology consists in combining data from inline amplifiers
and optical channel monitors (OCMs) to estimate gain and
noise power of each inline amplifiers to enhance QoT estima-
tion. The standard deviation of the QoT estimation error was
lower than 0.25 dB. However, this methodology needs to be
automated and QoT results integrated with failure management
systems.

E. Amplifier Modeling

The ML techniques described so far focus on predicting
BER, SNR or GSNR based on ML techniques consider
features such as span length, output power, data rate, mod-
ulation format, symbol rate, fiber attenuation as inputs to the
model. Modeling optical amplifiers is a crucial key in optical
networks. This allows more accurate performance analysis and
permit to better optimize network based on traffic conditions.

Amplifier modeling is crucial for understanding and miti-
gating the noise generated by amplifiers in optical systems, as
ASE noise is a major impairment [36]. Modeling amplifiers
involves accounting for factors like wavelength dependence
and spectral hole burning (SHB), which complicates traditional
modeling methods. SHB refers to the phenomenon where
certain frequency components of an optical signal experience
a decrease in gain or amplification within an erbium-doped
fiber amplifier (EDFA). This effect occurs due to interaction
between the optical signal and the rare-earth ions within the
fiber. Despite the difficulty in accurately predicting SHB effect,
a measurement technique was developed in [50], albeit with
some limitations.

Therefore, ML techniques are increasingly used to model
amplifiers more accurately. In [51] is described a research
that focuses on direct and inverse models for amplifiers where
direct models map amplifier properties to spectral responses,

while inverse models provide settings to achieve target re-
sponses. While most papers adopt the data analysis approach,
there are cases where the hybrid approach which combines
analytical models with data analysis is employed [52] to
improve training efficiency.

Despite variations in methodologies, each study focuses
on modeling a single amplifier under specific settings. While
the reported errors are typically low, they can accumulate in
systems with multiple amplifiers, impacting overall SNR in the
optical spectrum. So, accurate behavioral modeling of EDFA
and Raman amplifiers is a key part in optical performance
analysis.

It is sure that the provisioning of optical amplifiers, includ-
ing their placement, configuration, and operating parameters
such as gain, power levels, NF, directly impacts the QoT of
the transmitted lightpath. Improper provisioning or suboptimal
working points can lead to signal degradation, increased noise,
and reduced overall performance. High power levels due to
improper provisioning induce nonlinear effects in the optical
fiber such as SPM and XPM for example. These effects distort
the lightpath signals and affects the QoT.

Few articles described so far the influence of the amplifier
provisioning or amplifier working point in the QoT estimation
values based on ML techniques. GNPy, the open-source design
tool (which will be commented in the next section), considers
amplifier parameters such as gain and noise figure. It calculates
the GSNR value and the amplifier working points for optimal
operation.

F. QoT Estimation in Open and Disaggregated Optical Net-
works

The successful data center and SDN deployments have
fostered the appetite of operators to explore disaggregation
in optical networks. SDN offers promising solution to address
the complexities involved with coherent transmission, flexi-
ble modulation, and programmable transceivers. This means
to foster and drive towards full end-to-end vendor neutral
interoperable systems. This shift entails disaggregated hard-
ware and software, emphasizing interoperability, and sharing
responsibility between vendors and operators. To facilitate this,
operators, vendors, consortia, and other entities are collab-
orating and pushing this to define models for off-the-shelf
controllers and an estimator to assess quality of transmission in
optical systems. This effort, led by partnerships of operators,
vendors and suppliers within the Telecom Infra Project (TIP),
aims to simplify deployment, empower system integrators,
and provide stable benchmarks for performance decisions in
optical network design. The Physical Simulation Environment
(PSE) team within TIP is specifically working on developing
an open-source QoT estimator to support this endeavor called
Gaussian noise in Python (GNPy) [53]. GNPy is equipped
with a central engine that evaluates the QoT by factoring
in propagation effects. This core engine manages the data
flow between various nodes in the network, including fibers,
amplifiers, ROADM nodes, and transponders. It relies on
JSON or excel files internally converted to JSON, to describe
the parameters of each network node. This provides inputs
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to GNPy calculate ASE noise and nonlinear impairments
caused by fiber Kerr effects and inelastic scattering. So, it
is necessary to provide the amplifier modeling that accounts
the relationship between gain and noise figure. It calculates the
GSNR between a source and destination network element node
along a specific route, considering signal attenuation through
optical fibers, amplification at network nodes, and updated
spectral information. GNPy optimizes network operation by
calculating optimal levels of launch power and amplifiers
operating point.

The accuracy of a GNPy QoT estimation in a multi-vendor
open network is demonstrated in [53], [54], [55]. Results show
the accuracy of GNPy in predicting GSNR and OSNR values
with great accuracy (mean error within 0.4 dB and 1.0 db
for OSNR and GSNR values respectively) for channels with
different modulations.

In [56], the GNPy open QoT estimator is used as an
impairment-aware path computation in multi-vendor optical
networks. GNPy module is integrated with the open SDN
Controller T-PCE (traffic engineering path computation ele-
ment) through the development of a REST API that enables the
interaction between the two entities. This integration marks the
debut of GNPy as open plugin module to support a controller
in real-time.

Moving forward, in [57] is presented an open optical archi-
tecture centered around on a digital twin of the physical layer
within a hierarchical control system. An experimental demon-
stration is conducted with GNPy as the digital twin of the
optical physical layer while ONOS operated as the open SDN
controller. This setup showcases the reliability of the control
plane, which is decoupled from the data plane, by using GNPy
for lightpath QoT estimation and also for amplifier operating
point calculations. The reliability is tested through scenarios
like automatic failure restoration from fiber cut while network
resources are managed by the control plane and lightpath
allocations managed by the data plane. So, in [57], the GNPy
is leveraged to serve as a dual purpose: by configuring the
optical amplifiers, and operating as a QoT estimator and path
computation engine, functioning as the intelligence behind the
control system. Performance metrics regarding the interactions
involved in lightpath restoration are primarily hindered by
two-time consuming processes: the lightpath PCE (path com-
putation engine) and lightpath establishment, taking around
4.5 and 6.5 seconds, respectively. However, these durations
can potentially be reduced through hardware upgrades and
the adoption of next-generation transceivers, improving overall
network efficiency and responsiveness.

Figure 6 provides the relationship between the GNPy mod-
ule and other entities in an open optical network. The architec-
ture consists basically of the optical network controller (ONC),
the optical line controller (OLC) responsible for collecting
amplifiers information and setting their point of operation, and
the GNPy module. Interactions among the modules are done
through REST API, and NETCONF and YANG that interact
the OpenROADM agents. In [58] is described in detail the
workflow of this open optical network architecture, including
the open orchestrator.

VII. QOT PERFORMANCE METRICS OVERVIEW

The proposal of an ML-based QoT estimator, whether as a
classification or regression model, aims to provide an alterna-
tive to analytical models. To justify the investment in training
and deployment costs, ML-based solutions must demonstrate
superior performance in terms of QoT accuracy and compu-
tational efficiency compared to analytical models [10].

ML models have shown promise in accurately modeling
complex physical phenomena, making them viable candidates
for QoT estimation. They can offer faster execution time and
require fewer input parameters [15], enhancing efficiency and
show robustness with uncertain parameters [22].

The choice between classification and regression models
depends on operational requirements. Classification is suitable
for checking the feasibility of an optical path, while regression
is preferred when the QoT value is needed. Both approaches
benefit from assessing estimation errors to facilitate opera-
tional margins computation, with regression models offering
easier error assessment [10].

Additionally, it is explored how the performance of a
QoT estimator is affected by spectral data and recursive
ML structures, especially LSTM and GRU [34]. The results
demonstrate that algorithms exploring spectral features per-
form exceptionally well. This advancement can also facilitate
the transition to fully disaggregated networks without the
need for sharing confidential data. LSTM and GRU are also
effective in identifying deteriorations in lightpath performance
for up to four days, aiding in proactive maintenance efforts,
lightpaths monitoring over time and margin optimizations [7].
In [48] is presented an analytical model for QoT estimation
which includes spectral data, amplifier power measurements
from a disaggregated optical network leading to an accurate
QoT estimation.

Addressing the need for extended capacity in optical net-
works, in [46], [47] is proposed a QoT estimator that address
the need for the use of C + L bands in optical communication
systems.

Table II provides an overview of the more relevant described
algorithms and their respective performance metrics.

In summary, rapid and precise quality of transmission
(QoT) estimation information provides means to design and
operate marginless networks, implement proactive failure man-
agement, optimize amplifier operation, enable impairment-
aware RSA systems, optimize network resources, facilitate the
deployment of disaggregated networks, forecast SNR, enable
rapid lightpath provisioning and traffic reroute, and drive
efficient network reconfiguration, bringing optical network
automation to new levels. Figure 7 summarizes the benefits
of rapid and precise QoT estimation in optical networks.

VIII. CONCLUSION

In this paper was presented a survey and an overview on uti-
lizing ML to enhance QoT estimation, a trend gaining momen-
tum in recent years. The described cases consisted in models
that evaluate the feasibility of the path (classification models)
and models that estimated quantitatively the performance of
the lightpath (regression models). It includes techniques such
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Fig. 6. Open management and control architecture

Fig. 7. Drivings of rapid and precise QoT estimation
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TABLE II
ML ALGORITHMS AND PERFORMANCE METRICS

Name Algorithm Performance
Margin reduction based on gradient descent [39] SAMBA, EGN Typical error lower than 0.1 dB
BER prediction in WDM networks [40] GPR 95% confidence interval; Q error

lower than 0.3 dB
GSNR estimation based on ML regression [37] Regression Cost penalty lower than 0.069
QoT prediction of unestablished lightpaths [13] KNN, RF Reduction in installed transponders

can reach 17%. Classification accu-
racy reaches 84%

Technique for predicting whether lightpaths
meet QoT requirements in impairment-aware
networks

[41] CBR 79% to 98.7%

SNR estimation in a KDN environment [15] ANN Average error of 0.4 dB for regres-
sion; 99% accuracy for classification

Lightpaths into high or low quality categories [42] SVM 99.95% success rate
QoT estimation in optical networks [43] DGCNN 92% to 97% accuracy
BER prediction in WDM networks [40] GPR 95% confidence interval; Q error

lower than 0.3 dB
QoT estimation of unestablished lightpaths [44] ANN, SVM accuracy of 99.56% and 99.38%,

respectively
QoT estimation based on spectral data [22] ANN and LSTM R2 score greater than 0.9
SNR prediction for 4 days’ time-horizon [44] LSTM R2 scores reaches 0.1415 for a 96-

hour forecast

as ANN, SVM, KNN, RF and RNN techniques such as LSTM
and GRU that provide QoT estimation as well as performance
forecast.

Accurate and rapid QoT estimation serves as the cornerstone
of an efficient optical network infrastructure. The availability
of real-time performance assessment empowers network op-
erators to run the network with minimal margin which trans-
lates to significant cost savings on network infrastructure and
equipment. It works in conjunction with cognition systems,
providing to RSA and path computation engine (PCE) systems
real-time performance information to make rapid decisions.
This translates to faster lightpath provisioning and rapid traffic
reroute around outages or failures, minimizing downtime and
service disruptions. It enables improved network reliability
by enabling proactive network management through early
fault detection and performance optimization. Accurate QoT
estimation is critical for optimizing optical lines by adjust-
ing the operating point of optical amplifiers in a scenario
with different modulations and different symbol rates. It also
plays a pivotal role in network operation, maintenance, and
reconfiguration activities. Moreover, QoT estimation serves
as the foundation for enabling optical network automation,
streamlining processes and enhancing overall efficiency.

ML models exhibit potential in improving QoT estimation
accuracy, fast response and forecasting lightpath performance
degradation. However, there are challenges such as the scarcity
of field data. Despite this, ML offers a versatile approach,
capable of supplementing or replacing traditional, complex,
time-consuming and high-computing modeling methods, with
promising results reported in various optical networking fields.
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